(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables Category:probability <center> <font size= 4> [[ECE_PhD_Qualifying_Exams...)
 
Line 23: Line 23:
 
----
 
----
 
=Part 2=
 
=Part 2=
Consider <math class="inline">n</math> independent flips of a coin having probability <math class="inline">p</math> of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if <math class="inline">n=5</math> and the sequence <math class="inline">HHTHT</math> is observed, then there are 3 changeovers. Find the expected number of changeovers for <math class="inline">n</math> flips. ''Hint'': Express the number of changeovers as a sum of Bernoulli random variables.
+
Let <math>X_1,X_2,...</math> be a sequence of jointly Gaussian random variables with covariance
 +
 
 +
<math>Cov(X_i,X_j) = \left\{ \begin{array}{ll}
 +
{\sigma}^2, & i=j\\
 +
\rho{\sigma}^2, & |i-j|=1\\
 +
0, & otherwise
 +
  \end{array} \right.</math>
 +
 
 +
Suppose we take 2 consecutive samples from this sequence to form a vector <math>X</math>, which is then linearly transformed to form a 2-dimensional random vector <math>Y=AX</math>. Find a matrix <math>A</math> so that the components of <math>Y</math> are independent random variables You must justify your answer.
 
----
 
----
 
=Solution 1=
 
=Solution 1=
  
The number of changeovers <math>Y</math> can be expressed as the sum of n-1 Bernoulli random variables:
+
Suppose
 +
 
 +
<math>A=\left(\begin{array}{cc}
 +
a & b\\
 +
c & d
 +
\end{array} \right)</math>.
 +
 
 +
Then the new 2-D random vector can be expressed as
 +
 
 +
<math>Y=\left(\begin{array}{c}Y_1 \\ Y_2\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}aX_i+bX_j \\ cX_i+dX_j\end{array} \right)</math>
 +
 
  
<math>Y=\sum_{i=1}^{n-1}X_i</math>.
+
Therefore,
  
Therefore,
+
<math>\begin{array}{l}Cov(Y_1,Y_2)=E[(aX_i+bX_j-E(aX_i+bX_j))(cX_i+dX_j-E(cX_i+dX_j))] \\
 +
=E[(aX_i+bX_j-aE(X_i)-bE(X_j))(cX_i+dX_j-cE(X_i)-dE(X_j))] \\
 +
=E[acX_i^2+adX_iX_j-acX_iE(X_i)-adX_iE(X_j)+bcX_iX_j+bdX_j^2-bcX_jE(X_i)\\
 +
-bdX_jE(X_j)-acX_iE(X_i)-adX_jE(X_i)+acE(X_i)^2+adE(X_i)E(X_j)\\
 +
-bcX_iE(X_j)-bdX_jE(X_j)+bcE(X_i)E(X_j)+bdE(X_i)^2]\\
 +
=E(ac(X_i-E(X_i))^2+(ad+bc)(X_i-E(X_i)(X_j-E(X_j))+bd(X_j-E(X_j))^2]\\
 +
=(ac)Cov(X_i,X_i)+(ad+bc)Cov(X-i,X_j)+(bd)Cov(X_j,X_j)\\
 +
=ac\sigma^2+(ad+bc)\rho\sigma^2+bd\sigma^2
 +
\end{array}</math>
  
<math>E(Y)=E(\sum_{i=1}^{n-1}X_i)=\sum_{i=1}^{n-1}E(X_i)</math>.
+
Let the above formula equal to 0 and <math>a=b=d=1</math>, we get <math>c=-1</math>.
  
For Bernoulli random variables,
+
Therefore, a solution is
  
<math>E(X_i)=p(E_i=1)=p(1-p)+(1-p)p=2p(1-p)</math>.
+
<math>A=\left(\begin{array}{cc}
 +
1 & 1\\
 +
-1 & 1
 +
\end{array} \right)</math>.
  
Thus
 
  
<math>E(Y)=2(n-1)p(1-p)</math>.
 
  
 
----
 
----

Revision as of 18:36, 3 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 2

Let $ X_1,X_2,... $ be a sequence of jointly Gaussian random variables with covariance

$ Cov(X_i,X_j) = \left\{ \begin{array}{ll} {\sigma}^2, & i=j\\ \rho{\sigma}^2, & |i-j|=1\\ 0, & otherwise \end{array} \right. $

Suppose we take 2 consecutive samples from this sequence to form a vector $ X $, which is then linearly transformed to form a 2-dimensional random vector $ Y=AX $. Find a matrix $ A $ so that the components of $ Y $ are independent random variables You must justify your answer.


Solution 1

Suppose

$ A=\left(\begin{array}{cc} a & b\\ c & d \end{array} \right) $.

Then the new 2-D random vector can be expressed as

$ Y=\left(\begin{array}{c}Y_1 \\ Y_2\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}aX_i+bX_j \\ cX_i+dX_j\end{array} \right) $


Therefore,

$ \begin{array}{l}Cov(Y_1,Y_2)=E[(aX_i+bX_j-E(aX_i+bX_j))(cX_i+dX_j-E(cX_i+dX_j))] \\ =E[(aX_i+bX_j-aE(X_i)-bE(X_j))(cX_i+dX_j-cE(X_i)-dE(X_j))] \\ =E[acX_i^2+adX_iX_j-acX_iE(X_i)-adX_iE(X_j)+bcX_iX_j+bdX_j^2-bcX_jE(X_i)\\ -bdX_jE(X_j)-acX_iE(X_i)-adX_jE(X_i)+acE(X_i)^2+adE(X_i)E(X_j)\\ -bcX_iE(X_j)-bdX_jE(X_j)+bcE(X_i)E(X_j)+bdE(X_i)^2]\\ =E(ac(X_i-E(X_i))^2+(ad+bc)(X_i-E(X_i)(X_j-E(X_j))+bd(X_j-E(X_j))^2]\\ =(ac)Cov(X_i,X_i)+(ad+bc)Cov(X-i,X_j)+(bd)Cov(X_j,X_j)\\ =ac\sigma^2+(ad+bc)\rho\sigma^2+bd\sigma^2 \end{array} $

Let the above formula equal to 0 and $ a=b=d=1 $, we get $ c=-1 $.

Therefore, a solution is

$ A=\left(\begin{array}{cc} 1 & 1\\ -1 & 1 \end{array} \right) $.



Solution 2

For $ n $ flips, there are $ n-1 $ changeovers at most. Assume random variable $ k_i $ for changeover,

$ p({k_i}=1)=p(1-p)+(1-p)p=2p(1-p) $

$ E(k)=\sum_{i_1}^{n-1}p(k_i=1)=2(n-1)p(p-1) $

Critique on Solution 2:

It might be better to claim the changeover as a Bernoulli random variable so the logic is easier to understand.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett