Revision as of 17:06, 3 November 2014 by Wang1211 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 1

Consider $ n $ independent flips of a coin having probability $ p $ of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if $ n=5 $ and the sequence $ HHTHT $ is observed, then there are 3 changeovers. Find the expected number of changeovers for $ n $ flips. Hint: Express the number of changeovers as a sum of Bernoulli random variables.


Solution 1

The number of changeovers $ Y $ can be expressed as the sum of n-1 Bernoulli random variables:

$ Y=\sum_{i=1}^{n-1}X_i $

$ \Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{-\infty}^{\infty}\frac{A}{2}e^{-A\left|x\right|}\cdot e^{i\omega x}dx=\frac{A}{2}\left[\int_{-\infty}^{0}e^{x\left(A+i\omega\right)}dx+\int_{0}^{\infty}e^{x\left(-A+i\omega\right)}dx\right] $$ =\frac{A}{2}\left[\frac{e^{x\left(A+i\omega\right)}}{A+i\omega}\biggl|_{-\infty}^{0}+\frac{e^{x\left(-A+i\omega\right)}}{-A+i\omega}\biggl|_{0}^{\infty}\right]=\frac{A}{2}\left[\frac{1}{A+i\omega}-\frac{1}{-A+i\omega}\right] $$ =\frac{A}{2}\cdot\frac{A-i\omega+A+i\omega}{A^{2}+\omega^{2}}=\frac{A^{2}}{A^{2}+\omega^{2}}. $

(b)

$ P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)=1-P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right). $ By Chebyshev Inequality, $ P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|>2\sigma\right\} \right)\leq\frac{\sigma^{2}}{\left(2\sigma\right)^{2}}=\frac{1}{4} $ .

$ P\left(\left\{ \left|\mathbf{X}-\overline{\mathbf{X}}\right|\leq2\sigma\right\} \right)\geq\frac{3}{4}. $


Solution 2

Write it here.


Back to QE CS question 1, August 2000

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

EISL lab graduate

Mu Qiao