Line 34: Line 34:
  
 
d) Find <math> P(Y=kX)\ </math>.
 
d) Find <math> P(Y=kX)\ </math>.
 +
----
 +
=Solution 1 (retrived from [[Automatic_Controls:Linear_Systems_(HKNQE_August_2007)_Problem_1|here]])=
  
 +
*To find <math> P(min(X,Y)=k)\ </math>, let  <math> Z = min(X,Y)\ </math>. Then finding the pmf of Z uses the fact that X and Y are iid
 +
        <math> P(Z=k) = P(X \ge k,Y \ge k) = P(X \ge k)P(Y \ge k) = P(X \ge k)^2 </math>
  
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.1|answers and discussions]]'''
+
        <math> P(Z=k) = \left ( \sum_{i=k}^N \frac {1}{2^i} \right )^2 = \left ( \frac {1}{2^k} \right )^2 = \frac {1}{4^k} </math>
  
----
+
*To find <math> P(X=Y)\ </math>, note that  X and Y are iid and summing across all possible i,
'''2. (25 Points)'''
+
        <math> P(X=Y) = \sum_{i=1}^\infty P(X=i, Y=i) = \sum_{i=1}^\infty P(X=i)P(Y=i) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math>
  
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math> be a sequence of binomially distributed random variables, with the <math class="inline">n</math> -th random variable <math class="inline">\mathbf{X}_{n}</math>  having pmf <math class="inline">p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
+
*To find <math> P(Y>X)\ </math>, again note that X and Y are iid and summing across all possible i,
n\\
+
        <math> P(Y>X) = \sum_{i=1}^\infty P(Y>i, X=i) = \sum_{i=1}^\infty P(Y>i)P(x=i)</math>
k
+
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math>  
+
  
Show that, if the <math class="inline">p_{n}</math>  have the property that <math class="inline">np_{n}\rightarrow\lambda</math> as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math>  is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math>  with mean <math class="inline">\lambda</math> .
+
:Next, find <math> P(Y<i)\ </math>
 +
        <math> P(Y>i) = 1 - P(Y \le i) </math>
  
'''Hint:'''
+
        <math> P(Y \le i) = \sum_{i=1}^\infty \frac {1}{2^i} = 1 + \frac {1}{2^i} </math>
  
You may find the following fact useful:
+
      <math> \therefore P(Y>i) = \frac {1}{2^i} </math>
  
<math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
+
:Plugging this result back into the original expression yields
 +
        <math> P(Y<X) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3} </math>
  
  
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]''
+
*To find <math> P(Y=kX)\ </math>, note that X and Y are iid and summing over all possible combinations one arrives at
 +
        <math> P(Y=kX) = \sum_{i=1}^\infty i = 1^\infty P(Y=ki, X=i) = \sum_{i=1}^\infty P(Y=ki)P(X=i) </math>
 +
:Thus,
 +
        <math> P(Y=kX) = \sum_{i=1}^\infty \frac {1}{2^{ki}} \frac {1}{2^i} = \sum_{i=1}^\infty \frac {1}{2^{(k+1)i}} = \frac {1}{2^{(k+1)}-1} </math>
 
----
 
----
 +
==Solution 2==
 +
Write it here.
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 10:49, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2007



Question

X and Y are iid random variable with

$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $

a) Find $ P(min(X,Y)=k)\ $.

b) Find $ P(X=Y)\ $.

c) Find $ P(Y>X)\ $.

d) Find $ P(Y=kX)\ $.


Solution 1 (retrived from here)

  • To find $ P(min(X,Y)=k)\ $, let $ Z = min(X,Y)\ $. Then finding the pmf of Z uses the fact that X and Y are iid
       $  P(Z=k) = P(X \ge k,Y \ge k) = P(X \ge k)P(Y \ge k) = P(X \ge k)^2  $
       $  P(Z=k) = \left ( \sum_{i=k}^N \frac {1}{2^i} \right )^2 = \left ( \frac {1}{2^k} \right )^2 = \frac {1}{4^k}  $
  • To find $ P(X=Y)\ $, note that X and Y are iid and summing across all possible i,
       $  P(X=Y) = \sum_{i=1}^\infty P(X=i, Y=i) = \sum_{i=1}^\infty P(X=i)P(Y=i) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3}  $
  • To find $ P(Y>X)\ $, again note that X and Y are iid and summing across all possible i,
       $  P(Y>X) = \sum_{i=1}^\infty P(Y>i, X=i) = \sum_{i=1}^\infty P(Y>i)P(x=i) $
Next, find $ P(Y<i)\ $
       $  P(Y>i) = 1 - P(Y \le i)  $
       $  P(Y \le i) = \sum_{i=1}^\infty \frac {1}{2^i} = 1 + \frac {1}{2^i}  $
     $  \therefore P(Y>i) = \frac {1}{2^i}  $
Plugging this result back into the original expression yields
       $  P(Y<X) = \sum_{i=1}^\infty \frac {1}{4^i} = \frac {1}{3}  $


  • To find $ P(Y=kX)\ $, note that X and Y are iid and summing over all possible combinations one arrives at
       $  P(Y=kX) = \sum_{i=1}^\infty i = 1^\infty P(Y=ki, X=i) = \sum_{i=1}^\infty P(Y=ki)P(X=i)  $
Thus,
       $  P(Y=kX) = \sum_{i=1}^\infty \frac {1}{2^{ki}} \frac {1}{2^i} = \sum_{i=1}^\infty \frac {1}{2^{(k+1)i}} = \frac {1}{2^{(k+1)}-1}  $

Solution 2

Write it here.


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett