Line 56: Line 56:
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]''
 
:'''Click [[ECE_PhD_QE_CNSIP_2007_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2007_Problem1.2|answers and discussions]]''
 +
----
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 10:48, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2007



Question

X and Y are iid random variable with

$ P(X=i) = P(Y=i) = \frac {1}{2^i}\ ,i = 1,2,3,... $

a) Find $ P(min(X,Y)=k)\ $.

b) Find $ P(X=Y)\ $.

c) Find $ P(Y>X)\ $.

d) Find $ P(Y=kX)\ $.


Click here to view student answers and discussions

2. (25 Points)

Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $

Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .

Hint:

You may find the following fact useful:

$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $


'Click here to view student answers and discussions


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal