Line 1: Line 1:
 
2.4 Strong law of large numbers (Borel)
 
2.4 Strong law of large numbers (Borel)
  
Let <math>\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math>\mu</math>  and variance <math>\sigma^{2}</math> , and <math>Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , and <math class="inline">Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
  
Then <math>\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
+
Then <math class="inline">\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
  
 
Proof
 
Proof

Latest revision as of 11:41, 30 November 2010

2.4 Strong law of large numbers (Borel)

Let $ \left\{ \mathbf{X}_{n}\right\} $ be a sequence of identically distributed random variables with mean $ \mu $ and variance $ \sigma^{2} $ , and $ Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.} $

Then $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty. $

Proof

Beyound this course. Require measure theory.


Back to ECE600

Back to Sequences of Random Variables

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch