Line 1: Line 1:
 
2.4 Strong law of large numbers (Borel)
 
2.4 Strong law of large numbers (Borel)
  
Let <math>\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math>\mu</math>  and variance <math>\sigma^{2}</math> , and <math>Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of identically distributed random variables with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , and <math class="inline">Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.}</math>  
  
Then <math>\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
+
Then <math class="inline">\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty.</math>  
  
 
Proof
 
Proof

Latest revision as of 11:41, 30 November 2010

2.4 Strong law of large numbers (Borel)

Let $ \left\{ \mathbf{X}_{n}\right\} $ be a sequence of identically distributed random variables with mean $ \mu $ and variance $ \sigma^{2} $ , and $ Cov\left(\mathbf{X}_{i},\mathbf{X}_{j}\right)=E\left[\left(\mathbf{X}_{i}-\mu\right)\left(\mathbf{X}_{j}-\mu\right)\right]=0,\quad i\neq j\text{ : uncorrelated.} $

Then $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\longrightarrow\left(a.e.\right)\longrightarrow\mu\text{ as }n\longrightarrow\infty. $

Proof

Beyound this course. Require measure theory.


Back to ECE600

Back to Sequences of Random Variables

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett