Line 29: Line 29:
  
 
• <math>\mathbb{Z}_{n}</math> : the set of modulo <math>n</math>
 
• <math>\mathbb{Z}_{n}</math> : the set of modulo <math>n</math>
 +
 +
='''Logarithm'''=
 +
 +
• <math>\log</math> : base 2
 +
 +
• <math>\ln</math> : base <math>e</math>
 +
 +
='''Partition'''=
 +
 +
• A set <math>\mathcal{A}=\left\{ A_{1},A_{2},\cdots,A_{k}\right\}</math>  of disjoint subsets of a set <math>A</math>  is a partition of <math>A</math>  if <math>A=\bigcup_{i=1}^{k}A_{i}</math>  and <math>A_{i}\neq\varnothing</math>  for every <math>i</math> .
 +
 +
• Another partition <math>\left\{ A'_{1},A'_{2},\cdots,A'_{l}\right\}</math>  of <math>A</math>  refines the partition <math>\mathcal{A}</math>  if <math>A'_{i}</math>  is contained in some <math>A_{j}</math> .
 +
 +
'''<math>k</math> -sets and <math>k</math> -subsets'''
 +
 +
• \left[A\right]^{k}  is the set of all k -element subsets of A .
 +
 +
• Sets with k  elements will be called k -sets.
 +
 +
• Similarly, subsets with k  elements are k -subsets.

Revision as of 12:27, 16 November 2010

1.1 Basic Mathematics

1.1.1 Mathematical notation

 : approximately equal

~ : CST ·

Supremum and infimum vs. maximum and minimum

The concept of supremum, or least upper bound, is as follows: Let $ S={a[n]} $, the sequence with terms $ a[0],a[1],\cdots $ over all the nonnegative integers. $ S $ has a supremum, called $ \sup S $ , if for every $ n , a[n]\leq\sup S $ (i.e. no a[n] exceeds $ \sup S $ ), and furthermore, $ \sup S $ is the least value with this property; that is, if $ a[n]\leq b $ for all $ n $, then $ \sup S\leq b $ for all such $ b $ . This is why the supremum is also called the least upper bound, for a bound is a number which a function, sequence, or set, never exceeds. Similarly, one can define the infimum $ \inf S $ , or greatest lower bound.


• Consider the set $ \left\{ x:\;0<x<1\right\} $ . There is no maximum or minimum, however $ 0 $ is the infimum and $ 1 $ is the supremum.

• Consider the set $ S={a[n]},\; a[n]=1/n $ where $ n $ is a positive integer.

$ \sup S=1 $ , since $ 1/n>1/(n+1) $ for all such $ n $ , and so the largest term is the first. The maximum is also $ 1 $.

$ \inf S=0 $ . However, the minimum does not exist.

Well-known sets

$ \mathbb{N} $ : the set of natural numbers. It is countably infinite.

$ \mathbb{N}_{0}=\left\{ 0,1,\cdots\right\} $

$ \mathbb{N}^{*}=\mathbb{N}_{1}=\left\{ 1,2,\cdots\right\} $

$ \mathbb{Z}_{n} $ : the set of modulo $ n $

Logarithm

$ \log $ : base 2

$ \ln $ : base $ e $

Partition

• A set $ \mathcal{A}=\left\{ A_{1},A_{2},\cdots,A_{k}\right\} $ of disjoint subsets of a set $ A $ is a partition of $ A $ if $ A=\bigcup_{i=1}^{k}A_{i} $ and $ A_{i}\neq\varnothing $ for every $ i $ .

• Another partition $ \left\{ A'_{1},A'_{2},\cdots,A'_{l}\right\} $ of $ A $ refines the partition $ \mathcal{A} $ if $ A'_{i} $ is contained in some $ A_{j} $ .

$ k $ -sets and $ k $ -subsets

• \left[A\right]^{k} is the set of all k -element subsets of A .

• Sets with k elements will be called k -sets.

• Similarly, subsets with k elements are k -subsets.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch