Line 1: Line 1:
3.3 The Power Spectrum
+
=3.3 The Power Spectrum=
  
Definition. Power spectrum
+
'''Definition.''' Power spectrum
  
The power spectrum or power spectral density (PSD) of a W.S.S. random process <math>\mathbf{X}\left(t\right)</math> , real or complex, is the Fourier transform of the autocorrelation function:
+
The power spectrum or power spectral density (PSD) of a W.S.S. random process <math class="inline">\mathbf{X}\left(t\right)</math> , real or complex, is the Fourier transform of the autocorrelation function:
  
<math>S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
+
<math class="inline">S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
  
where <math>R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. </math>
+
where <math class="inline">R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. </math>
  
 
Note
 
Note
  
1. Because <math>R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right)</math> , <math>S_{\mathbf{XX}}\left(\omega\right)</math>  is a real function.
+
1. Because <math class="inline">R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right)</math> , <math class="inline">S_{\mathbf{XX}}\left(\omega\right)</math>  is a real function.
  
2. <math>R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega</math> . (Fourier inversion formula)
+
2. <math class="inline">R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega</math> . (Fourier inversion formula)
  
3. In order to consider <math>S_{\mathbf{XX}}\left(\omega\right)</math> , we assume <math>\mathbf{X}\left(t\right)</math>  is at least W.S.S.
+
3. In order to consider <math class="inline">S_{\mathbf{XX}}\left(\omega\right)</math> , we assume <math class="inline">\mathbf{X}\left(t\right)</math>  is at least W.S.S.
  
4. The PSD of <math>\mathbf{X}\left(t\right)</math>  is a non-negative valued function of <math>\omega</math> . <math>(\because R_{\mathbf{XX}}\left(\tau\right)</math>  is non-negative definite.)
+
4. The PSD of <math class="inline">\mathbf{X}\left(t\right)</math>  is a non-negative valued function of <math class="inline">\omega</math> . <math class="inline">(\because R_{\mathbf{XX}}\left(\tau\right)</math>  is non-negative definite.)
  
 
Note
 
Note
Line 25: Line 25:
 
Key result
 
Key result
  
If <math>\mathbf{X}\left(t\right)</math>  is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response <math>h\left(t\right)</math> , then the output <math>\mathbf{Y}\left(t\right)</math>  has PSD
+
If <math class="inline">\mathbf{X}\left(t\right)</math>  is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response <math class="inline">h\left(t\right)</math> , then the output <math class="inline">\mathbf{Y}\left(t\right)</math>  has PSD
  
<math>S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}</math>  
+
<math class="inline">S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}</math>  
  
where <math>H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt</math> .
+
where <math class="inline">H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt</math> .
  
 
Definition. Cross-power spectral density
 
Definition. Cross-power spectral density
  
The cross-power spectral density of jointly-distributed W.S.S. random processes <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  is the Fourier transform of their cross-correlation:
+
The cross-power spectral density of jointly-distributed W.S.S. random processes <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{Y}\left(t\right)</math>  is the Fourier transform of their cross-correlation:
  
<math>S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
+
<math class="inline">S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau</math>  
  
where <math>R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right]</math> .
+
where <math class="inline">R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right]</math> .
  
 
Note
 
Note
Line 45: Line 45:
 
Note
 
Note
  
<math>R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega.</math>
+
<math class="inline">R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega.</math>
  
 
----
 
----

Latest revision as of 11:53, 30 November 2010

3.3 The Power Spectrum

Definition. Power spectrum

The power spectrum or power spectral density (PSD) of a W.S.S. random process $ \mathbf{X}\left(t\right) $ , real or complex, is the Fourier transform of the autocorrelation function:

$ S_{\mathbf{XX}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XX}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{X}^{*}\left(t\right)\right]. $

Note

1. Because $ R_{\mathbf{XX}}\left(-\tau\right)=R_{\mathbf{XX}}^{*}\left(\tau\right) $ , $ S_{\mathbf{XX}}\left(\omega\right) $ is a real function.

2. $ R_{\mathbf{XX}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XX}}\left(\omega\right)e^{i\omega\tau}d\omega $ . (Fourier inversion formula)

3. In order to consider $ S_{\mathbf{XX}}\left(\omega\right) $ , we assume $ \mathbf{X}\left(t\right) $ is at least W.S.S.

4. The PSD of $ \mathbf{X}\left(t\right) $ is a non-negative valued function of $ \omega $ . $ (\because R_{\mathbf{XX}}\left(\tau\right) $ is non-negative definite.)

Note

The PSD gives the average distribution of power in frequency for a random process.

Key result

If $ \mathbf{X}\left(t\right) $ is a W.S.S. random process and it is the input to a stable L.T.I. system with impulse response $ h\left(t\right) $ , then the output $ \mathbf{Y}\left(t\right) $ has PSD

$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2} $

where $ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt $ .

Definition. Cross-power spectral density

The cross-power spectral density of jointly-distributed W.S.S. random processes $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ is the Fourier transform of their cross-correlation:

$ S_{\mathbf{XY}}\left(\omega\right)\triangleq\int_{-\infty}^{\infty}R_{\mathbf{XY}}\left(\tau\right)e^{-i\omega\tau}d\tau $

where $ R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t+\tau\right)\mathbf{Y}^{*}\left(t\right)\right] $ .

Note

The cross-power spectral density need not be real or non-negative.

Note

$ R_{\mathbf{XY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{XY}}\left(\omega\right)e^{i\omega\tau}d\omega. $


Back to ECE600

Back to General Concepts of Stochastic Processes

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn