(New page: 3.2 Systems with Stochastic Inputs Given a random process <math>\mathbf{X}\left(t\right)</math> , if we assign a new sample function <math>\mathbf{Y}\left(t,\omega\right)</math> to each ...)
 
Line 5: Line 5:
 
Note
 
Note
  
We will assume that <math>T</math>  is deterministic (NOT random). Think of <math>\mathbf{X}\left(t\right)=\text{input to a system}</math>. <math>\mathbf{Y}\left(t\right)=\text{output of a system}<math>.  
+
We will assume that <math>T</math>  is deterministic (NOT random). Think of <math>\mathbf{X}\left(t\right)=\text{input to a system}</math>. <math>\mathbf{Y}\left(t\right)=\text{output of a system}</math>.  
  
 
<math>\mathbf{Y}\left(t,\omega\right)=T\left[\mathbf{X}\left(t,\omega\right)\right],\quad\forall\omega\in\mathcal{S}</math>.  
 
<math>\mathbf{Y}\left(t,\omega\right)=T\left[\mathbf{X}\left(t,\omega\right)\right],\quad\forall\omega\in\mathcal{S}</math>.  
Line 56: Line 56:
  
 
<math>g\left(x\right)=\left\{ \begin{array}{lll}
 
<math>g\left(x\right)=\left\{ \begin{array}{lll}
+1    ,x>0;
+
+1    ,x>0\\
 
-1    ,x\leq0.
 
-1    ,x\leq0.
 
\end{array}\right.</math>  
 
\end{array}\right.</math>  
  
Consider \mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right)=\textrm{sgn}\left(\mathbf{X}\left(t\right)\right) . Find E\left[\mathbf{Y}\left(t\right)\right]  and R_{\mathbf{YY}}\left(t_{1},t_{2}\right)  given the “statistics” of \mathbf{X}\left(t\right) .
+
Consider <math>\mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right)=\textrm{sgn}\left(\mathbf{X}\left(t\right)\right)</math> . Find <math>E\left[\mathbf{Y}\left(t\right)\right]</math> and <math>R_{\mathbf{YY}}\left(t_{1},t_{2}\right)</math> given the “statistics” of <math>\mathbf{X}\left(t\right)</math> .
  
 
Solution
 
Solution
  
E\left[\mathbf{Y}\left(t\right)\right]  
+
<math>E\left[\mathbf{Y}\left(t\right)\right]=\left(+1\right)\cdot P\left(\left\{ \mathbf{Y}\left(t\right)=+1\right\} \right)+\left(-1\right)\cdot P\left(\left\{ \mathbf{Y}\left(t\right)=-1\right\} \right)</math><math>=\left(+1\right)\cdot\left(1-F_{\mathbf{X}\left(t\right)}\left(0\right)\right)+\left(-1\right)\cdot F_{\mathbf{X}\left(t\right)}\left(0\right)=1-2F_{\mathbf{X}\left(t\right)}\left(0\right).</math>
  
R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=\left(+1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)+\left(-1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\leq0\right\} \right)  
+
<math>R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=\left(+1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)+\left(-1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\leq0\right\} \right)</math>
  
where P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)=\int_{0}^{\infty}\int_{0}^{\infty}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2}+\int_{-\infty}^{0}\int_{-\infty}^{0}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2} .
+
where <math>P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)=\int_{0}^{\infty}\int_{0}^{\infty}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2}+\int_{-\infty}^{0}\int_{-\infty}^{0}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2}</math> .
  
 
Example
 
Example
  
\mathbf{X}\left(t\right)=\mathbf{A}\cdot\cos\left(\omega_{0}t+\mathbf{\Theta}\right) where \mathbf{A}  and \mathbf{\Theta}  are independent random variables and \mathbf{\Theta}\sim u\left[0,2\pi\right) . Assume that \mathbf{A}  has a mean \mu_{\mathbf{A}}  and a variance \sigma_{\mathbf{A}}^{2} . Is \mathbf{X}\left(t\right)  a WSS random process?
+
<math>\mathbf{X}\left(t\right)=\mathbf{A}\cdot\cos\left(\omega_{0}t+\mathbf{\Theta}\right)</math> where <math>\mathbf{A}</math> and <math>\mathbf{\Theta}</math> are independent random variables and <math>\mathbf{\Theta}\sim u\left[0,2\pi\right)</math> . Assume that <math>\mathbf{A}</math> has a mean <math>\mu_{\mathbf{A}}</math> and a variance <math>\sigma_{\mathbf{A}}^{2}</math> . Is <math>\mathbf{X}\left(t\right)</math> a WSS random process?
  
 
Solution
 
Solution
  
• Check whether E\left[\mathbf{X}\left(t\right)\right]  is constant or not: E\left[\mathbf{X}\left(t\right)\right]  
+
• Check whether <math>E\left[\mathbf{X}\left(t\right)\right]</math> is constant or not: <math>E\left[\mathbf{X}\left(t\right)\right]</math>
  
• Check whether R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(\tau\right) : R_{\mathbf{XX}}\left(t_{1},t_{2}\right)  
+
• Check whether <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(\tau\right) :</math> <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right) = E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]</math><math>=E\left[\mathbf{A}\cdot\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\mathbf{A}\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right]</math><math>=E\left[\mathbf{A}^{2}\right]\cdot E\left[\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right]<math>=\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cdot E\left[\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right]</math><math>=\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cdot\left\{ \frac{1}{2}E\left[\cos\left(\omega_{0}\left(t_{1}+t_{2}\right)+\mathbf{2\Theta}\right)\right]+\frac{1}{2}E\left[\cos\left(\omega_{0}\left(t_{1}-t_{2}\right)\right)\right]\right\} </math><math>=\frac{1}{2}\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cos\left(\omega_{0}\left(t_{1}-t_{2}\right)\right).</math>
  
• \therefore\mathbf{X}\left(t\right)  is WSS.
+
<math>\therefore\mathbf{X}\left(t\right)</math> is WSS.
  
 
Recall
 
Recall
  
\cos\alpha\cos\beta=\frac{1}{2}\left\{ \cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)\right\} .  
+
<math>\cos\alpha\cos\beta=\frac{1}{2}\left\{ \cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)\right\}</math> .  
  
 
3.2.2 LTI (Linear Time-Invariant) system
 
3.2.2 LTI (Linear Time-Invariant) system
Line 92: Line 92:
 
A linear system L\left[\cdot\right]  is a transformation rule satisfying the following properties.
 
A linear system L\left[\cdot\right]  is a transformation rule satisfying the following properties.
  
1. L\left[\mathbf{X}_{1}\left(t\right)+\mathbf{X}_{2}\left(t\right)\right]=L\left[\mathbf{X}_{1}\left(t\right)\right]+L\left[\mathbf{X}_{2}\left(t\right)\right] .
+
1. <math>L\left[\mathbf{X}_{1}\left(t\right)+\mathbf{X}_{2}\left(t\right)\right]=L\left[\mathbf{X}_{1}\left(t\right)\right]+L\left[\mathbf{X}_{2}\left(t\right)\right]</math> .
  
2. L\left[\mathbf{A}\cdot\mathbf{X}\left(t\right)\right]=\mathbf{A}\cdot L\left[\mathbf{X}\left(t\right)\right] .
+
2. <math>L\left[\mathbf{A}\cdot\mathbf{X}\left(t\right)\right]=\mathbf{A}\cdot L\left[\mathbf{X}\left(t\right)\right]</math> .
  
 
Time-invariant
 
Time-invariant
  
A (linear) system is time-invariant if, given response \mathbf{Y}\left(t\right)  for an input \mathbf{X}\left(t\right) , it has response \mathbf{Y}\left(t+c\right)  for input \mathbf{X}\left(t+c\right) , for all c\in\mathbb{R} .
+
A (linear) system is time-invariant if, given response <math>\mathbf{Y}\left(t\right)</math> for an input <math>\mathbf{X}\left(t\right)</math> , it has response <math>\mathbf{Y}\left(t+c\right)</math> for input <math>\mathbf{X}\left(t+c\right)</math> , for all <math>c\in\mathbb{R}</math> .
  
 
LTI
 
LTI
  
A linear time-invariant system is one that is both linear and time-invariant. A LTI system is characterized by its impulse response h\left(t\right) :
+
A linear time-invariant system is one that is both linear and time-invariant. A LTI system is characterized by its impulse response <math>h\left(t\right)</math> :
  
  
  
If we put a random process \mathbf{X}\left(t\right)  into a LTI system, we get a random process \mathbf{Y}\left(t\right)  out of the system. \mathbf{Y}\left(t\right)=\mathbf{X}\left(t\right)*h\left(t\right)=\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha=\int_{-\infty}^{\infty}\mathbf{X}\left(\alpha\right)h\left(t-\alpha\right)d\alpha.  
+
If we put a random process <math>\mathbf{X}\left(t\right)</math> into a LTI system, we get a random process <math>\mathbf{Y}\left(t\right)</math> out of the system. <math>\mathbf{Y}\left(t\right)=\mathbf{X}\left(t\right)*h\left(t\right)=\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha=\int_{-\infty}^{\infty}\mathbf{X}\left(\alpha\right)h\left(t-\alpha\right)d\alpha.</math>
  
 
Important Facts
 
Important Facts
Line 112: Line 112:
 
1. If the input to a LTI system is a Gaussian random process, the output is a Gaussian random process.
 
1. If the input to a LTI system is a Gaussian random process, the output is a Gaussian random process.
  
2. If the input to a stable L.T.I. system is S.S.S., so is the output. L.T.I. system is stable if \int_{-\infty}^{\infty}\left|h\left(t\right)\right|dt<\infty.  
+
2. If the input to a stable L.T.I. system is S.S.S., so is the output. L.T.I. system is stable if <math>\int_{-\infty}^{\infty}\left|h\left(t\right)\right|dt<\infty.</math>
  
 
Fundamental Theorem
 
Fundamental Theorem
  
• For any linear system we will encounter E\left[L\left[\mathbf{X}\left(t\right)\right]\right]=L\left[E\left[\mathbf{X}\left(t\right)\right]\right].  
+
• For any linear system we will encounter <math>E\left[L\left[\mathbf{X}\left(t\right)\right]\right]=L\left[E\left[\mathbf{X}\left(t\right)\right]\right].</math>
  
• Applying this to a L.T.I. system, we get E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha\right]=\int_{-\infty}^{\infty}E\left[\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)\right]d\alpha=\int_{-\infty}^{\infty}\eta_{\mathbf{X}}\left(t-\alpha\right)h\left(\alpha\right)d\alpha. \therefore\eta_{\mathbf{Y}}\left(t\right)=E\left[\mathbf{Y}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)*h\left(t\right).  
+
• Applying this to a L.T.I. system, we get <math>E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha\right]=\int_{-\infty}^{\infty}E\left[\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)\right]d\alpha=\int_{-\infty}^{\infty}\eta_{\mathbf{X}}\left(t-\alpha\right)h\left(\alpha\right)d\alpha.</math><math> \therefore\eta_{\mathbf{Y}}\left(t\right)=E\left[\mathbf{Y}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)*h\left(t\right).</math>
  
 
Output Autocorrelation
 
Output Autocorrelation
  
R_{\mathbf{YY}}\left(t_{1},t_{2}\right)  
+
<math>R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=E\left[\int_{-\infty}^{\infty}\mathbf{X}\left(t_{1}-\alpha\right)h\left(\alpha\right)d\alpha\cdot\int_{-\infty}^{\infty}\mathbf{X}\left(t_{2}-\beta\right)h\left(\beta\right)d\beta\right]</math><math>=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}E\left[\mathbf{X}\left(t_{1}-\alpha\right)\mathbf{X}\left(t_{2}-\beta\right)\right]h\left(\alpha\right)h\left(\beta\right)d\alpha d\beta</math><math>=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(t_{1}-\alpha,t_{2}-\beta\right)h\left(\alpha\right)h\left(\beta\right)d\alpha d\beta.</math>
  
 
Theorem
 
Theorem
  
 
If the input to a stable LTI system is WSS, so is the output.
 
If the input to a stable LTI system is WSS, so is the output.

Revision as of 06:51, 19 November 2010

3.2 Systems with Stochastic Inputs

Given a random process $ \mathbf{X}\left(t\right) $ , if we assign a new sample function $ \mathbf{Y}\left(t,\omega\right) $ to each sample function $ \mathbf{X}\left(t,\omega\right) $ , then we have a new random process $ \mathbf{Y}\left(t\right) $ : $ \mathbf{Y}\left(t\right)=T\left[\mathbf{X}\left(t\right)\right] $ .

Note

We will assume that $ T $ is deterministic (NOT random). Think of $ \mathbf{X}\left(t\right)=\text{input to a system} $. $ \mathbf{Y}\left(t\right)=\text{output of a system} $.

$ \mathbf{Y}\left(t,\omega\right)=T\left[\mathbf{X}\left(t,\omega\right)\right],\quad\forall\omega\in\mathcal{S} $.

In ECE, we are often interested in finding a statistical description of $ \mathbf{Y}\left(t\right) $ in terms of that of $ \mathbf{X}\left(t\right) $ . For general $ T\left[\cdot\right] $ , this is very difficult. We will look at two special cases:

1. Memoryless system

2. Linear time-invariant system

3.2.1 Memoryless System

Definition

A system is called memoryless if its output $ \mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right) $ , where $ g:\mathbf{R}\rightarrow\mathbf{R} $ is only a function of its current argument $ x $ .

$ g\left(\cdot\right) $ is not a function of the past or future values of input.

$ \mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right) $ depends only on the instantaneous value of $ \mathbf{X}\left(t\right) $ at time $ t $ .

Example

Square is a memoryless system.

$ g\left(x\right)=x^{2}. $

$ \mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right)=\mathbf{X}^{2}\left(t\right). $

Example

Integrators are NOT memoryless. They have memory of the past.

$ \mathbf{Y}\left(t\right)=\int_{-\infty}^{t}\mathbf{X}\left(\alpha\right)d\alpha. $

$ \mathbf{Y}\left(t,\omega\right)=\int_{-\infty}^{t}\mathbf{X}\left(\alpha,\omega\right)d\alpha. $

Note

For memoryless systems, the first-order density $ f_{\mathbf{Y}\left(t\right)}\left(y\right) $ of $ \mathbf{Y}\left(t\right) $ can be expressed in terms of the first-order density of $ \mathbf{X}\left(t\right) $ and $ g\left(\cdot\right) $ . This is just a simple function of a random variable. Also $ E\left[\mathbf{Y}\left(t\right)\right]=E\left[g\left(\mathbf{X}\left(t\right)\right)\right]=\int_{-\infty}^{\infty}g\left(x\right)f_{\mathbf{X}\left(t\right)}\left(x\right)dx $ and $ R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g\left(x_{1}\right)g\left(x_{2}\right)f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2}. $

Also, you can get the n-th order pdf of $ \mathbf{Y}\left(t\right) $ using the mapping $ \mathbf{Y}\left(t_{1}\right)=g\left(\mathbf{X}\left(t_{1}\right)\right),\cdots,\mathbf{Y}\left(t_{n}\right)=g\left(\mathbf{X}\left(t_{n}\right)\right) $ .

Theorem

Let $ \mathbf{X}\left(t\right) $ be a S.S.S. random process that is the input to a memoryless system. Then the output \mathbf{Y}\left(t\right) is also a S.S.S. random process.

Example. Hard limiter

Consider a memoryless system with

$ g\left(x\right)=\left\{ \begin{array}{lll} +1 ,x>0\\ -1 ,x\leq0. \end{array}\right. $

Consider $ \mathbf{Y}\left(t\right)=g\left(\mathbf{X}\left(t\right)\right)=\textrm{sgn}\left(\mathbf{X}\left(t\right)\right) $ . Find $ E\left[\mathbf{Y}\left(t\right)\right] $ and $ R_{\mathbf{YY}}\left(t_{1},t_{2}\right) $ given the “statistics” of $ \mathbf{X}\left(t\right) $ .

Solution

$ E\left[\mathbf{Y}\left(t\right)\right]=\left(+1\right)\cdot P\left(\left\{ \mathbf{Y}\left(t\right)=+1\right\} \right)+\left(-1\right)\cdot P\left(\left\{ \mathbf{Y}\left(t\right)=-1\right\} \right) $$ =\left(+1\right)\cdot\left(1-F_{\mathbf{X}\left(t\right)}\left(0\right)\right)+\left(-1\right)\cdot F_{\mathbf{X}\left(t\right)}\left(0\right)=1-2F_{\mathbf{X}\left(t\right)}\left(0\right). $

$ R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=\left(+1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)+\left(-1\right)\cdot P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\leq0\right\} \right) $

where $ P\left(\left\{ \mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)>0\right\} \right)=\int_{0}^{\infty}\int_{0}^{\infty}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2}+\int_{-\infty}^{0}\int_{-\infty}^{0}f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)dx_{1}dx_{2} $ .

Example

$ \mathbf{X}\left(t\right)=\mathbf{A}\cdot\cos\left(\omega_{0}t+\mathbf{\Theta}\right) $ where $ \mathbf{A} $ and $ \mathbf{\Theta} $ are independent random variables and $ \mathbf{\Theta}\sim u\left[0,2\pi\right) $ . Assume that $ \mathbf{A} $ has a mean $ \mu_{\mathbf{A}} $ and a variance $ \sigma_{\mathbf{A}}^{2} $ . Is $ \mathbf{X}\left(t\right) $ a WSS random process?

Solution

• Check whether $ E\left[\mathbf{X}\left(t\right)\right] $ is constant or not: $ E\left[\mathbf{X}\left(t\right)\right] $

• Check whether $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(\tau\right) : $ $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) = E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right] $$ =E\left[\mathbf{A}\cdot\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\mathbf{A}\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right] $$ =E\left[\mathbf{A}^{2}\right]\cdot E\left[\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right]<math>=\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cdot E\left[\cos\left(\omega_{0}t_{1}+\mathbf{\Theta}\right)\cdot\cos\left(\omega_{0}t_{2}+\mathbf{\Theta}\right)\right] $$ =\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cdot\left\{ \frac{1}{2}E\left[\cos\left(\omega_{0}\left(t_{1}+t_{2}\right)+\mathbf{2\Theta}\right)\right]+\frac{1}{2}E\left[\cos\left(\omega_{0}\left(t_{1}-t_{2}\right)\right)\right]\right\} $$ =\frac{1}{2}\left(\sigma_{\mathbf{A}}^{2}+\mu_{\mathbf{A}}^{2}\right)\cos\left(\omega_{0}\left(t_{1}-t_{2}\right)\right). $

$ \therefore\mathbf{X}\left(t\right) $ is WSS.

Recall

$ \cos\alpha\cos\beta=\frac{1}{2}\left\{ \cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)\right\} $ .

3.2.2 LTI (Linear Time-Invariant) system

Linear Systems

A linear system L\left[\cdot\right] is a transformation rule satisfying the following properties.

1. $ L\left[\mathbf{X}_{1}\left(t\right)+\mathbf{X}_{2}\left(t\right)\right]=L\left[\mathbf{X}_{1}\left(t\right)\right]+L\left[\mathbf{X}_{2}\left(t\right)\right] $ .

2. $ L\left[\mathbf{A}\cdot\mathbf{X}\left(t\right)\right]=\mathbf{A}\cdot L\left[\mathbf{X}\left(t\right)\right] $ .

Time-invariant

A (linear) system is time-invariant if, given response $ \mathbf{Y}\left(t\right) $ for an input $ \mathbf{X}\left(t\right) $ , it has response $ \mathbf{Y}\left(t+c\right) $ for input $ \mathbf{X}\left(t+c\right) $ , for all $ c\in\mathbb{R} $ .

LTI

A linear time-invariant system is one that is both linear and time-invariant. A LTI system is characterized by its impulse response $ h\left(t\right) $ :


If we put a random process $ \mathbf{X}\left(t\right) $ into a LTI system, we get a random process $ \mathbf{Y}\left(t\right) $ out of the system. $ \mathbf{Y}\left(t\right)=\mathbf{X}\left(t\right)*h\left(t\right)=\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha=\int_{-\infty}^{\infty}\mathbf{X}\left(\alpha\right)h\left(t-\alpha\right)d\alpha. $

Important Facts

1. If the input to a LTI system is a Gaussian random process, the output is a Gaussian random process.

2. If the input to a stable L.T.I. system is S.S.S., so is the output. L.T.I. system is stable if $ \int_{-\infty}^{\infty}\left|h\left(t\right)\right|dt<\infty. $

Fundamental Theorem

• For any linear system we will encounter $ E\left[L\left[\mathbf{X}\left(t\right)\right]\right]=L\left[E\left[\mathbf{X}\left(t\right)\right]\right]. $

• Applying this to a L.T.I. system, we get $ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)d\alpha\right]=\int_{-\infty}^{\infty}E\left[\mathbf{X}\left(t-\alpha\right)h\left(\alpha\right)\right]d\alpha=\int_{-\infty}^{\infty}\eta_{\mathbf{X}}\left(t-\alpha\right)h\left(\alpha\right)d\alpha. $$ \therefore\eta_{\mathbf{Y}}\left(t\right)=E\left[\mathbf{Y}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)*h\left(t\right). $

Output Autocorrelation

$ R_{\mathbf{YY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)\right]=E\left[\int_{-\infty}^{\infty}\mathbf{X}\left(t_{1}-\alpha\right)h\left(\alpha\right)d\alpha\cdot\int_{-\infty}^{\infty}\mathbf{X}\left(t_{2}-\beta\right)h\left(\beta\right)d\beta\right] $$ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}E\left[\mathbf{X}\left(t_{1}-\alpha\right)\mathbf{X}\left(t_{2}-\beta\right)\right]h\left(\alpha\right)h\left(\beta\right)d\alpha d\beta $$ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}R_{\mathbf{XX}}\left(t_{1}-\alpha,t_{2}-\beta\right)h\left(\alpha\right)h\left(\beta\right)d\alpha d\beta. $

Theorem

If the input to a stable LTI system is WSS, so is the output.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang