Line 3: Line 3:
 
Stochastic process
 
Stochastic process
  
The idea of a stochastic process is a straightforward extension of that of random variable. Instead of mapping each <math>\omega\in\mathcal{S}</math>  of a random experiment to a number <math>\mathbf{X}\left(\omega\right)</math> , we map it to a function of time <math>\mathbf{X}\left(t,\omega\right)</math>  that is called sample function.
+
The idea of a stochastic process is a straightforward extension of that of random variable. Instead of mapping each <math class="inline">\omega\in\mathcal{S}</math>  of a random experiment to a number <math class="inline">\mathbf{X}\left(\omega\right)</math> , we map it to a function of time <math class="inline">\mathbf{X}\left(t,\omega\right)</math>  that is called sample function.
  
 
Note
 
Note
Line 11: Line 11:
 
Note
 
Note
  
If we pick a particular point in time <math>t=t_{1}</math> , we have <math>\mathbf{X}\left(t_{1},\omega\right)</math>  that is a random variable.
+
If we pick a particular point in time <math class="inline">t=t_{1}</math> , we have <math class="inline">\mathbf{X}\left(t_{1},\omega\right)</math>  that is a random variable.
  
 
Definition
 
Definition
  
A stochastic process or random process defined on <math>\left(\mathcal{S},\mathcal{F},\mathcal{P}\right)</math>  is a famility of random variables
+
A stochastic process or random process defined on <math class="inline">\left(\mathcal{S},\mathcal{F},\mathcal{P}\right)</math>  is a famility of random variables
  
<math>\left\{ \mathbf{X}\left(t\right):t\in\mathbf{T}\right\}</math>   
+
<math class="inline">\left\{ \mathbf{X}\left(t\right):t\in\mathbf{T}\right\}</math>   
  
indexed by <math>t</math> , where the index set <math>\mathbf{T}</math>  can be discrete or continuous.
+
indexed by <math class="inline">t</math> , where the index set <math class="inline">\mathbf{T}</math>  can be discrete or continuous.
  
 
Note
 
Note
  
1. If <math>\mathbf{T}</math>  is an uncountable subset of <math>\mathbf{R}</math> , <math>\mathbf{X}\left(t\right)</math>  is called a continuous-time random process.
+
1. If <math class="inline">\mathbf{T}</math>  is an uncountable subset of <math class="inline">\mathbf{R}</math> , <math class="inline">\mathbf{X}\left(t\right)</math>  is called a continuous-time random process.
  
2. If <math>\mathbf{T}</math>  is an discrete set, <math>\mathbf{X}\left(t\right)</math>  is called a discrete-time random process.
+
2. If <math class="inline">\mathbf{T}</math>  is an discrete set, <math class="inline">\mathbf{X}\left(t\right)</math>  is called a discrete-time random process.
  
3. <math>\mathbf{X}\left(t\right)</math>  is called a discrete-state random process if for all <math>t\in\mathbf{T}</math> , it takes on values from a discrete set. Otherwise it is called a continuous-state random process.
+
3. <math class="inline">\mathbf{X}\left(t\right)</math>  is called a discrete-state random process if for all <math class="inline">t\in\mathbf{T}</math> , it takes on values from a discrete set. Otherwise it is called a continuous-state random process.
  
 
Note
 
Note
Line 35: Line 35:
 
Notation
 
Notation
  
We will use the notation <math>\mathbf{X}\left(t\right)</math>  to represent a random process (just as we use <math>\mathbf{X}</math>  to represent a random variable). Technically we should write <math>\mathbf{X}\left(t,\omega\right)</math>  or <math>\mathbf{X}\left(\cdot,\cdot\right)</math>  (just as technically we should write <math>\mathbf{X}\left(\omega\right)</math>  or <math>\mathbf{X}\left(\cdot\right)</math>  for a random variable).
+
We will use the notation <math class="inline">\mathbf{X}\left(t\right)</math>  to represent a random process (just as we use <math class="inline">\mathbf{X}</math>  to represent a random variable). Technically we should write <math class="inline">\mathbf{X}\left(t,\omega\right)</math>  or <math class="inline">\mathbf{X}\left(\cdot,\cdot\right)</math>  (just as technically we should write <math class="inline">\mathbf{X}\left(\omega\right)</math>  or <math class="inline">\mathbf{X}\left(\cdot\right)</math>  for a random variable).
  
<math>\mathbf{X}\left(\cdot,\cdot\right):\mathbf{T}\times\mathcal{S}\longrightarrow\mathbf{R}.</math>  
+
<math class="inline">\mathbf{X}\left(\cdot,\cdot\right):\mathbf{T}\times\mathcal{S}\longrightarrow\mathbf{R}.</math>  
  
 
note
 
note
  
• <math>\mathbf{X}\left(t,\omega\right)</math>  or <math>\mathbf{X}\left(\cdot,\cdot\right)</math>  is a random process.
+
• <math class="inline">\mathbf{X}\left(t,\omega\right)</math>  or <math class="inline">\mathbf{X}\left(\cdot,\cdot\right)</math>  is a random process.
  
• <math>\mathbf{X}\left(t_{0},\omega\right)</math>  or <math>\mathbf{X}\left(t_{0},\cdot\right)</math>  is a random variable for fixed </math>t_{0}</math> .
+
• <math class="inline">\mathbf{X}\left(t_{0},\omega\right)</math>  or <math class="inline">\mathbf{X}\left(t_{0},\cdot\right)</math>  is a random variable for fixed </math>t_{0}</math> .
  
• <math>\mathbf{X}\left(t,\omega_{0}\right)</math>  or <math>\mathbf{X}\left(\cdot,\omega_{0}\right)</math>  for a fixed <math>\omega_{0}\in\mathcal{S}</math>  is a function of time or sample function.
+
• <math class="inline">\mathbf{X}\left(t,\omega_{0}\right)</math>  or <math class="inline">\mathbf{X}\left(\cdot,\omega_{0}\right)</math>  for a fixed <math class="inline">\omega_{0}\in\mathcal{S}</math>  is a function of time or sample function.
  
• <math>\mathbf{X}\left(t_{0},\omega_{0}\right)</math>  is a real number.
+
• <math class="inline">\mathbf{X}\left(t_{0},\omega_{0}\right)</math>  is a real number.
  
 
3.1.1 Statistics of Stochastic Processes
 
3.1.1 Statistics of Stochastic Processes
Line 57: Line 57:
 
Definition
 
Definition
  
The first-order CDF of a random process <math>\mathbf{X}\left(t\right)</math>  is
+
The first-order CDF of a random process <math class="inline">\mathbf{X}\left(t\right)</math>  is
  
<math>F_{\mathbf{X}\left(t\right)}\left(x\right)\triangleq P\left(\left\{ X\left(t\right)\leq x\right\} \right)=F_{\mathbf{X}\left(t\right)}\left(x,t\right)</math>.  
+
<math class="inline">F_{\mathbf{X}\left(t\right)}\left(x\right)\triangleq P\left(\left\{ X\left(t\right)\leq x\right\} \right)=F_{\mathbf{X}\left(t\right)}\left(x,t\right)</math>.  
  
The first-order PDF of a random process <math>\mathbf{X}\left(t\right)</math>  is
+
The first-order PDF of a random process <math class="inline">\mathbf{X}\left(t\right)</math>  is
  
<math>f_{\mathbf{X}\left(t\right)}\left(x\right)=\frac{dF_{\mathbf{X}\left(t\right)}\left(x\right)}{dx}=f_{\mathbf{X}\left(t\right)}\left(x,t\right).</math>  
+
<math class="inline">f_{\mathbf{X}\left(t\right)}\left(x\right)=\frac{dF_{\mathbf{X}\left(t\right)}\left(x\right)}{dx}=f_{\mathbf{X}\left(t\right)}\left(x,t\right).</math>  
  
 
The n-th order CDF and PDF
 
The n-th order CDF and PDF
  
We are often interested in the joint behavior of <math>\mathbf{X}\left(t\right)</math>  sample at more than one point in time. First-order description is not sufficient.
+
We are often interested in the joint behavior of <math class="inline">\mathbf{X}\left(t\right)</math>  sample at more than one point in time. First-order description is not sufficient.
  
 
Definition
 
Definition
  
The n-th order CDF of a random process <math>\mathbf{X}\left(t\right)</math>  is
+
The n-th order CDF of a random process <math class="inline">\mathbf{X}\left(t\right)</math>  is
  
<math>F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)</math>  
+
<math class="inline">F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)</math>  
  
 
and the n-th order PDF is
 
and the n-th order PDF is
  
<math>f_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=\frac{\partial^{n}F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)}{\partial x_{1}\cdots\partial x_{n}}.</math>  
+
<math class="inline">f_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=\frac{\partial^{n}F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)}{\partial x_{1}\cdots\partial x_{n}}.</math>  
  
Of particular interest are the second order <math>\left(n=2\right)</math>  CDFs and PDFs, <math>F_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right)</math>  and <math>f_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right)</math> .
+
Of particular interest are the second order <math class="inline">\left(n=2\right)</math>  CDFs and PDFs, <math class="inline">F_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right)</math>  and <math class="inline">f_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right)</math> .
  
 
3.1.2 General Properties
 
3.1.2 General Properties
Line 85: Line 85:
 
Fact
 
Fact
  
A complex random process <math>\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right)</math>  where <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  are real jointly-distributed random processes, is completely characterized by
+
A complex random process <math class="inline">\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right)</math>  where <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{Y}\left(t\right)</math>  are real jointly-distributed random processes, is completely characterized by
  
<math>F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n},t_{1},\cdots,t_{n}\right)</math>  
+
<math class="inline">F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n},t_{1},\cdots,t_{n}\right)</math>  
  
for all <math>n\in\mathbf{N}</math>  and all <math>t_{1},\cdots,t_{n}</math> . (This is a very hard result to proof.)
+
for all <math class="inline">n\in\mathbf{N}</math>  and all <math class="inline">t_{1},\cdots,t_{n}</math> . (This is a very hard result to proof.)
  
 
Fact. The real version
 
Fact. The real version
  
A real random process <math>\mathbf{X}\left(t\right)</math>  is completely chracterized by the joint CDF
+
A real random process <math class="inline">\mathbf{X}\left(t\right)</math>  is completely chracterized by the joint CDF
  
<math>F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n};t_{1},\cdots,t_{n}\right)</math>  
+
<math class="inline">F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n};t_{1},\cdots,t_{n}\right)</math>  
  
for all <math>n\in\mathbf{N}</math>  and all <math>t_{1},\cdots,t_{n}</math> .
+
for all <math class="inline">n\in\mathbf{N}</math>  and all <math class="inline">t_{1},\cdots,t_{n}</math> .
  
 
Defintion. Autocorrelation function
 
Defintion. Autocorrelation function
  
For a random process <math>\mathbf{X}\left(t\right)</math> , real or complex, the autocorrelation function of <math>\mathbf{X}\left(t\right)</math>  is  
+
For a random process <math class="inline">\mathbf{X}\left(t\right)</math> , real or complex, the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math>  is  
  
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)\triangleq E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right].</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)\triangleq E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right].</math>  
  
 
Note
 
Note
  
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
  
 
Note
 
Note
  
For <math>\mathbf{X}\left(t\right)</math>  real
+
For <math class="inline">\mathbf{X}\left(t\right)</math>  real
  
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]</math>  
  
 
and
 
and
  
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{XX}}\left(t_{2},t_{1}\right).</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{XX}}\left(t_{2},t_{1}\right).</math>  
  
 
Note
 
Note
  
<math>E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=E\left[\mathbf{X}\left(t\right)\mathbf{X}^{*}\left(t\right)\right]=R_{\mathbf{XX}}\left(t,t\right).</math>  
+
<math class="inline">E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=E\left[\mathbf{X}\left(t\right)\mathbf{X}^{*}\left(t\right)\right]=R_{\mathbf{XX}}\left(t,t\right).</math>  
  
<math>E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]\geq0\Longrightarrow R_{\mathbf{XX}}\left(t,t\right)\geq0,\quad\forall t.</math>  
+
<math class="inline">E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]\geq0\Longrightarrow R_{\mathbf{XX}}\left(t,t\right)\geq0,\quad\forall t.</math>  
  
 
Definition. Mean
 
Definition. Mean
  
The mean of a random process <math>\mathbf{X}\left(t\right)</math>  is
+
The mean of a random process <math class="inline">\mathbf{X}\left(t\right)</math>  is
  
<math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right].</math>  
+
<math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right].</math>  
  
If <math>\mathbf{X}\left(t\right)</math>  is a complex random process with <math>\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)</math> , then <math>E\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)\right]=E\left[\mathbf{X}_{R}\left(t\right)\right]+iE\left[\mathbf{X}_{I}\left(t\right)\right].</math>  
+
If <math class="inline">\mathbf{X}\left(t\right)</math>  is a complex random process with <math class="inline">\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)</math> , then <math class="inline">E\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)\right]=E\left[\mathbf{X}_{R}\left(t\right)\right]+iE\left[\mathbf{X}_{I}\left(t\right)\right].</math>  
  
 
Definition. Autocovariance function
 
Definition. Autocovariance function
  
The autocovariance function of a random process <math>\mathbf{X}\left(t\right)</math>  with mean <math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math>  is  
+
The autocovariance function of a random process <math class="inline">\mathbf{X}\left(t\right)</math>  with mean <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math>  is  
  
<math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
+
<math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
  
 
Fact
 
Fact
  
The autocorrelation function <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is a non-negative definite function: for any set of numbers <math>\left\{ a_{i}\right\}</math>  and times <math>\left\{ t_{i}\right\}</math>  , and any <math>n\in\mathbf{N}</math>  
+
The autocorrelation function <math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is a non-negative definite function: for any set of numbers <math class="inline">\left\{ a_{i}\right\}</math>  and times <math class="inline">\left\{ t_{i}\right\}</math>  , and any <math class="inline">n\in\mathbf{N}</math>  
  
<math>\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}^{*}R_{\mathbf{XX}}\left(t_{i},t_{j}\right)\geq0.</math>  
+
<math class="inline">\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}^{*}R_{\mathbf{XX}}\left(t_{i},t_{j}\right)\geq0.</math>  
  
 
Definition. White noise process
 
Definition. White noise process
  
A random process <math>\mathbf{W}\left(t\right)</math>  is a white noise process if <math>C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=0 , \forall t_{1}\neq t_{2}</math> .
+
A random process <math class="inline">\mathbf{W}\left(t\right)</math>  is a white noise process if <math class="inline">C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=0 , \forall t_{1}\neq t_{2}</math> .
  
 
Note
 
Note
  
We will see that all non-trivial white noise processes have <math>C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=q\left(t_{1}\right)\cdot\delta\left(t_{1}-t_{2}\right)</math> .
+
We will see that all non-trivial white noise processes have <math class="inline">C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=q\left(t_{1}\right)\cdot\delta\left(t_{1}-t_{2}\right)</math> .
  
 
Definition. Gaussian random process
 
Definition. Gaussian random process
  
A random process <math>\mathbf{X}\left(t\right)</math>  is called Gaussian random process if random variables <math>\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right),\cdots,\mathbf{X}\left(t_{n}\right)</math>  are jointly Gaussian for any <math>n\in\mathbf{N}</math>  and any set of sampling times <math>t_{1},t_{2},\cdots,t_{n}</math> .
+
A random process <math class="inline">\mathbf{X}\left(t\right)</math>  is called Gaussian random process if random variables <math class="inline">\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right),\cdots,\mathbf{X}\left(t_{n}\right)</math>  are jointly Gaussian for any <math class="inline">n\in\mathbf{N}</math>  and any set of sampling times <math class="inline">t_{1},t_{2},\cdots,t_{n}</math> .
  
 
Note
 
Note
  
The n-th order characteristic function of a Gaussian random process is <math>\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> .  
+
The n-th order characteristic function of a Gaussian random process is <math class="inline">\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> .  
  
 
Important Fact
 
Important Fact
  
A Gaussian random process is completely characterized by <math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math>  and <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]</math> .
+
A Gaussian random process is completely characterized by <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math>  and <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]</math> .
  
 
3.1.3 Stationary Processes
 
3.1.3 Stationary Processes
Line 169: Line 169:
 
Definition. SSS
 
Definition. SSS
  
A random process <math>\mathbf{X}\left(t\right)</math>  is called stationary or strict-sense stationary (SSS) if its probalistic description is invariant to shifts in the time origin:
+
A random process <math class="inline">\mathbf{X}\left(t\right)</math>  is called stationary or strict-sense stationary (SSS) if its probalistic description is invariant to shifts in the time origin:
  
<math>F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n}\right)</math>  
+
<math class="inline">F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n}\right)</math>  
  
for all <math>c\in\mathbf{R}</math> , for all <math>n\in\mathbf{N}</math> , and for all <math>t_{1},\cdots,t_{n}</math> .
+
for all <math class="inline">c\in\mathbf{R}</math> , for all <math class="inline">n\in\mathbf{N}</math> , and for all <math class="inline">t_{1},\cdots,t_{n}</math> .
  
 
Definition. Jointly SSS
 
Definition. Jointly SSS
Line 179: Line 179:
 
Two random processes are jointly SSS if their joint probabilistic description is invariant to shifts in the time origin:
 
Two random processes are jointly SSS if their joint probabilistic description is invariant to shifts in the time origin:
  
<math>F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right),\mathbf{Y}\left(t_{1}+c\right),\cdots,\mathbf{Y}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right).</math>  
+
<math class="inline">F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right),\mathbf{Y}\left(t_{1}+c\right),\cdots,\mathbf{Y}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right).</math>  
  
for all <math>c\in\mathbf{R}</math> , for all <math>n\in\mathbf{N}</math> , and for all <math>t_{1},\cdots,t_{n}</math> .
+
for all <math class="inline">c\in\mathbf{R}</math> , for all <math class="inline">n\in\mathbf{N}</math> , and for all <math class="inline">t_{1},\cdots,t_{n}</math> .
  
 
Definition
 
Definition
  
A complex random process <math>\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right)</math>  where <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  are real processes is SSS if <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  are jointly SSS.
+
A complex random process <math class="inline">\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right)</math>  where <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{Y}\left(t\right)</math>  are real processes is SSS if <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{Y}\left(t\right)</math>  are jointly SSS.
  
 
Notes on stationary random processes
 
Notes on stationary random processes
  
1. The first-order (n=1 ) cdf or pdf of a stationary random process is independent of time: <math>f_{\mathbf{X}\left(t\right)}\left(x\right)=f_{\mathbf{X}\left(t+c\right)}\left(x\right),\quad\forall t\in\mathbf{R}.</math>  
+
1. The first-order (n=1 ) cdf or pdf of a stationary random process is independent of time: <math class="inline">f_{\mathbf{X}\left(t\right)}\left(x\right)=f_{\mathbf{X}\left(t+c\right)}\left(x\right),\quad\forall t\in\mathbf{R}.</math>  
  
2. The second order (n=2 ) cdf or pdf is a function of time only through the time difference <math>\tau_{12}=t_{1}-t_{2} :</math> <math>f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)=f_{\mathbf{X}\left(t_{1}+c\right)\mathbf{X}\left(t_{2}+c\right)}\left(x_{1},x_{2}\right)=f\left(x_{1},x_{2},\tau_{12}\right).</math>  
+
2. The second order (n=2 ) cdf or pdf is a function of time only through the time difference <math class="inline">\tau_{12}=t_{1}-t_{2} :</math> <math class="inline">f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)=f_{\mathbf{X}\left(t_{1}+c\right)\mathbf{X}\left(t_{2}+c\right)}\left(x_{1},x_{2}\right)=f\left(x_{1},x_{2},\tau_{12}\right).</math>  
  
 
Definition. WSS
 
Definition. WSS
  
• A random process <math>\mathbf{X}\left(t\right)</math>  is called wide sense stationary (WSS) if it satisfies the following two conditions:
+
• A random process <math class="inline">\mathbf{X}\left(t\right)</math>  is called wide sense stationary (WSS) if it satisfies the following two conditions:
  
1. <math>E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)=\eta_{\mathbf{X}}\left(\mathbf{\text{constant}}\right)</math> .
+
1. <math class="inline">E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)=\eta_{\mathbf{X}}\left(\mathbf{\text{constant}}\right)</math> .
  
2. <math>E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)=R_{\mathbf{X}}\left(\tau\right)</math>  where <math>\tau=t_{1}-t_{2}</math> .
+
2. <math class="inline">E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)=R_{\mathbf{X}}\left(\tau\right)</math>  where <math class="inline">\tau=t_{1}-t_{2}</math> .
  
• For a WSS random process <math>\mathbf{X}\left(t\right)</math> , <math>E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)|_{t_{1}=t,t_{2}=t}=R_{\mathbf{XX}}\left(t,t\right)=R_{\mathbf{X}}\left(t-t\right)=R_{\mathbf{X}}\left(0\right).</math>  
+
• For a WSS random process <math class="inline">\mathbf{X}\left(t\right)</math> , <math class="inline">E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)|_{t_{1}=t,t_{2}=t}=R_{\mathbf{XX}}\left(t,t\right)=R_{\mathbf{X}}\left(t-t\right)=R_{\mathbf{X}}\left(0\right).</math>  
  
• The autocovariance function of a WSS random process <math>\mathbf{X}\left(t\right)</math>  is <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\left(\mathbf{X}\left(t_{1}\right)-\eta_{\mathbf{X}}\right)\left(\mathbf{X}\left(t_{2}\right)-\eta_{\mathbf{X}}\right)^{*}\right]=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=R_{\mathbf{X}}\left(\tau\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=C_{\mathbf{X}}\left(\tau\right)</math> where <math>\tau=t_{1}-t_{2}</math> .
+
• The autocovariance function of a WSS random process <math class="inline">\mathbf{X}\left(t\right)</math>  is <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\left(\mathbf{X}\left(t_{1}\right)-\eta_{\mathbf{X}}\right)\left(\mathbf{X}\left(t_{2}\right)-\eta_{\mathbf{X}}\right)^{*}\right]=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=R_{\mathbf{X}}\left(\tau\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=C_{\mathbf{X}}\left(\tau\right)</math> where <math class="inline">\tau=t_{1}-t_{2}</math> .
  
 
Note
 
Note
  
If <math>\mathbf{X}\left(t\right)</math>  is a SSS random process, then it is WSS. The converse is NOT true. The Gaussian random process is an exception.
+
If <math class="inline">\mathbf{X}\left(t\right)</math>  is a SSS random process, then it is WSS. The converse is NOT true. The Gaussian random process is an exception.
  
 
Theorem
 
Theorem
  
If <math>\mathbf{X}\left(t\right)</math>  is a WSS random process and it is Gaussian, then it is SSS.
+
If <math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS random process and it is Gaussian, then it is SSS.
  
 
Proof
 
Proof
  
Assume <math>\mathbf{X}\left(t\right)</math>  has mean <math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}</math>  and covariance <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=C_{\mathbf{X}}\left(t_{1}-t_{2}\right)</math> . Then the random variables <math>\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)</math>  have joint characteristic function.
+
Assume <math class="inline">\mathbf{X}\left(t\right)</math>  has mean <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}</math>  and covariance <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=C_{\mathbf{X}}\left(t_{1}-t_{2}\right)</math> . Then the random variables <math class="inline">\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)</math>  have joint characteristic function.
  
<math>\Phi_{\mathbf{X}\left(t_{1}+c\right)\cdots\mathbf{X}\left(t_{n}+c\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}+c\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j}+c,t_{k}+c\right)\omega_{j}\omega_{k}\right\}</math><math>=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} </math><math>=\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right).</math>
+
<math class="inline">\Phi_{\mathbf{X}\left(t_{1}+c\right)\cdots\mathbf{X}\left(t_{n}+c\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}+c\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j}+c,t_{k}+c\right)\omega_{j}\omega_{k}\right\}</math><math class="inline">=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} </math><math class="inline">=\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right).</math>
  
<math>\therefore\mathbf{X}\left(t\right)</math>  is SSS.
+
<math class="inline">\therefore\mathbf{X}\left(t\right)</math>  is SSS.
  
 
----
 
----

Latest revision as of 11:47, 30 November 2010

3.1 Definitions

Stochastic process

The idea of a stochastic process is a straightforward extension of that of random variable. Instead of mapping each $ \omega\in\mathcal{S} $ of a random experiment to a number $ \mathbf{X}\left(\omega\right) $ , we map it to a function of time $ \mathbf{X}\left(t,\omega\right) $ that is called sample function.

Note

There is nothing random about the sample functions. The randomness comes from the underlying random experiment.

Note

If we pick a particular point in time $ t=t_{1} $ , we have $ \mathbf{X}\left(t_{1},\omega\right) $ that is a random variable.

Definition

A stochastic process or random process defined on $ \left(\mathcal{S},\mathcal{F},\mathcal{P}\right) $ is a famility of random variables

$ \left\{ \mathbf{X}\left(t\right):t\in\mathbf{T}\right\} $

indexed by $ t $ , where the index set $ \mathbf{T} $ can be discrete or continuous.

Note

1. If $ \mathbf{T} $ is an uncountable subset of $ \mathbf{R} $ , $ \mathbf{X}\left(t\right) $ is called a continuous-time random process.

2. If $ \mathbf{T} $ is an discrete set, $ \mathbf{X}\left(t\right) $ is called a discrete-time random process.

3. $ \mathbf{X}\left(t\right) $ is called a discrete-state random process if for all $ t\in\mathbf{T} $ , it takes on values from a discrete set. Otherwise it is called a continuous-state random process.

Note

Thermal noise is continuous-time continuous state random process.

Notation

We will use the notation $ \mathbf{X}\left(t\right) $ to represent a random process (just as we use $ \mathbf{X} $ to represent a random variable). Technically we should write $ \mathbf{X}\left(t,\omega\right) $ or $ \mathbf{X}\left(\cdot,\cdot\right) $ (just as technically we should write $ \mathbf{X}\left(\omega\right) $ or $ \mathbf{X}\left(\cdot\right) $ for a random variable).

$ \mathbf{X}\left(\cdot,\cdot\right):\mathbf{T}\times\mathcal{S}\longrightarrow\mathbf{R}. $

note

$ \mathbf{X}\left(t,\omega\right) $ or $ \mathbf{X}\left(\cdot,\cdot\right) $ is a random process.

$ \mathbf{X}\left(t_{0},\omega\right) $ or $ \mathbf{X}\left(t_{0},\cdot\right) $ is a random variable for fixed </math>t_{0}</math> .

$ \mathbf{X}\left(t,\omega_{0}\right) $ or $ \mathbf{X}\left(\cdot,\omega_{0}\right) $ for a fixed $ \omega_{0}\in\mathcal{S} $ is a function of time or sample function.

$ \mathbf{X}\left(t_{0},\omega_{0}\right) $ is a real number.

3.1.1 Statistics of Stochastic Processes

First-order CDF and PDF

We use CDFs and PDFs to characterize the probalistic behavior of a random process. A random process sampled at a point in time is a random variable. We can consider its CDF or PDF.

Definition

The first-order CDF of a random process $ \mathbf{X}\left(t\right) $ is

$ F_{\mathbf{X}\left(t\right)}\left(x\right)\triangleq P\left(\left\{ X\left(t\right)\leq x\right\} \right)=F_{\mathbf{X}\left(t\right)}\left(x,t\right) $.

The first-order PDF of a random process $ \mathbf{X}\left(t\right) $ is

$ f_{\mathbf{X}\left(t\right)}\left(x\right)=\frac{dF_{\mathbf{X}\left(t\right)}\left(x\right)}{dx}=f_{\mathbf{X}\left(t\right)}\left(x,t\right). $

The n-th order CDF and PDF

We are often interested in the joint behavior of $ \mathbf{X}\left(t\right) $ sample at more than one point in time. First-order description is not sufficient.

Definition

The n-th order CDF of a random process $ \mathbf{X}\left(t\right) $ is

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right) $

and the n-th order PDF is

$ f_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=\frac{\partial^{n}F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)}{\partial x_{1}\cdots\partial x_{n}}. $

Of particular interest are the second order $ \left(n=2\right) $ CDFs and PDFs, $ F_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right) $ and $ f_{\mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2};t_{1},t_{2}\right) $ .

3.1.2 General Properties

Fact

A complex random process $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right) $ where $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are real jointly-distributed random processes, is completely characterized by

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n},t_{1},\cdots,t_{n}\right) $

for all $ n\in\mathbf{N} $ and all $ t_{1},\cdots,t_{n} $ . (This is a very hard result to proof.)

Fact. The real version

A real random process $ \mathbf{X}\left(t\right) $ is completely chracterized by the joint CDF

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n};t_{1},\cdots,t_{n}\right) $

for all $ n\in\mathbf{N} $ and all $ t_{1},\cdots,t_{n} $ .

Defintion. Autocorrelation function

For a random process $ \mathbf{X}\left(t\right) $ , real or complex, the autocorrelation function of $ \mathbf{X}\left(t\right) $ is

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)\triangleq E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]. $

Note

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $

Note

For $ \mathbf{X}\left(t\right) $ real

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right] $

and

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{XX}}\left(t_{2},t_{1}\right). $

Note

$ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=E\left[\mathbf{X}\left(t\right)\mathbf{X}^{*}\left(t\right)\right]=R_{\mathbf{XX}}\left(t,t\right). $

$ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]\geq0\Longrightarrow R_{\mathbf{XX}}\left(t,t\right)\geq0,\quad\forall t. $

Definition. Mean

The mean of a random process $ \mathbf{X}\left(t\right) $ is

$ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]. $

If $ \mathbf{X}\left(t\right) $ is a complex random process with $ \mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right) $ , then $ E\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)=\mathbf{X}_{R}\left(t\right)+i\mathbf{X}_{I}\left(t\right)\right]=E\left[\mathbf{X}_{R}\left(t\right)\right]+iE\left[\mathbf{X}_{I}\left(t\right)\right]. $

Definition. Autocovariance function

The autocovariance function of a random process $ \mathbf{X}\left(t\right) $ with mean $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ is

$ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $

Fact

The autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is a non-negative definite function: for any set of numbers $ \left\{ a_{i}\right\} $ and times $ \left\{ t_{i}\right\} $ , and any $ n\in\mathbf{N} $

$ \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}^{*}R_{\mathbf{XX}}\left(t_{i},t_{j}\right)\geq0. $

Definition. White noise process

A random process $ \mathbf{W}\left(t\right) $ is a white noise process if $ C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=0 , \forall t_{1}\neq t_{2} $ .

Note

We will see that all non-trivial white noise processes have $ C_{\mathbf{WW}}\left(t_{1},t_{2}\right)=q\left(t_{1}\right)\cdot\delta\left(t_{1}-t_{2}\right) $ .

Definition. Gaussian random process

A random process $ \mathbf{X}\left(t\right) $ is called Gaussian random process if random variables $ \mathbf{X}\left(t_{1}\right),\mathbf{X}\left(t_{2}\right),\cdots,\mathbf{X}\left(t_{n}\right) $ are jointly Gaussian for any $ n\in\mathbf{N} $ and any set of sampling times $ t_{1},t_{2},\cdots,t_{n} $ .

Note

The n-th order characteristic function of a Gaussian random process is $ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .

Important Fact

A Gaussian random process is completely characterized by $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right] $ .

3.1.3 Stationary Processes

Definition. SSS

A random process $ \mathbf{X}\left(t\right) $ is called stationary or strict-sense stationary (SSS) if its probalistic description is invariant to shifts in the time origin:

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n}\right) $

for all $ c\in\mathbf{R} $ , for all $ n\in\mathbf{N} $ , and for all $ t_{1},\cdots,t_{n} $ .

Definition. Jointly SSS

Two random processes are jointly SSS if their joint probabilistic description is invariant to shifts in the time origin:

$ F_{\mathbf{X}\left(t_{1}\right),\cdots,\mathbf{X}\left(t_{n}\right),\mathbf{Y}\left(t_{1}\right),\cdots,\mathbf{Y}\left(t_{n}\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right)=F_{\mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right),\mathbf{Y}\left(t_{1}+c\right),\cdots,\mathbf{Y}\left(t_{n}+c\right)}\left(x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\right). $

for all $ c\in\mathbf{R} $ , for all $ n\in\mathbf{N} $ , and for all $ t_{1},\cdots,t_{n} $ .

Definition

A complex random process $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)+i\mathbf{Y}\left(t\right) $ where $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are real processes is SSS if $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ are jointly SSS.

Notes on stationary random processes

1. The first-order (n=1 ) cdf or pdf of a stationary random process is independent of time: $ f_{\mathbf{X}\left(t\right)}\left(x\right)=f_{\mathbf{X}\left(t+c\right)}\left(x\right),\quad\forall t\in\mathbf{R}. $

2. The second order (n=2 ) cdf or pdf is a function of time only through the time difference $ \tau_{12}=t_{1}-t_{2} : $ $ f_{\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)}\left(x_{1},x_{2}\right)=f_{\mathbf{X}\left(t_{1}+c\right)\mathbf{X}\left(t_{2}+c\right)}\left(x_{1},x_{2}\right)=f\left(x_{1},x_{2},\tau_{12}\right). $

Definition. WSS

• A random process $ \mathbf{X}\left(t\right) $ is called wide sense stationary (WSS) if it satisfies the following two conditions:

1. $ E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}}\left(t\right)=\eta_{\mathbf{X}}\left(\mathbf{\text{constant}}\right) $ .

2. $ E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}^{*}\left(t_{2}\right)\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)=R_{\mathbf{X}}\left(\tau\right) $ where $ \tau=t_{1}-t_{2} $ .

• For a WSS random process $ \mathbf{X}\left(t\right) $ , $ E\left[\left|\mathbf{X}\left(t\right)\right|^{2}\right]=R_{\mathbf{XX}}\left(t_{1},t_{2}\right)|_{t_{1}=t,t_{2}=t}=R_{\mathbf{XX}}\left(t,t\right)=R_{\mathbf{X}}\left(t-t\right)=R_{\mathbf{X}}\left(0\right). $

• The autocovariance function of a WSS random process $ \mathbf{X}\left(t\right) $ is $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\left(\mathbf{X}\left(t_{1}\right)-\eta_{\mathbf{X}}\right)\left(\mathbf{X}\left(t_{2}\right)-\eta_{\mathbf{X}}\right)^{*}\right]=R_{\mathbf{X}}\left(t_{1}-t_{2}\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=R_{\mathbf{X}}\left(\tau\right)-\eta_{\mathbf{X}}\eta_{\mathbf{X}}^{*}=C_{\mathbf{X}}\left(\tau\right) $ where $ \tau=t_{1}-t_{2} $ .

Note

If $ \mathbf{X}\left(t\right) $ is a SSS random process, then it is WSS. The converse is NOT true. The Gaussian random process is an exception.

Theorem

If $ \mathbf{X}\left(t\right) $ is a WSS random process and it is Gaussian, then it is SSS.

Proof

Assume $ \mathbf{X}\left(t\right) $ has mean $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]=\eta_{\mathbf{X}} $ and covariance $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right)=C_{\mathbf{X}}\left(t_{1}-t_{2}\right) $ . Then the random variables $ \mathbf{X}\left(t_{1}+c\right),\cdots,\mathbf{X}\left(t_{n}+c\right) $ have joint characteristic function.

$ \Phi_{\mathbf{X}\left(t_{1}+c\right)\cdots\mathbf{X}\left(t_{n}+c\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}+c\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j}+c,t_{k}+c\right)\omega_{j}\omega_{k}\right\} $$ =\exp\left\{ i\sum_{k=1}^{n}\eta_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $$ =\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right). $

$ \therefore\mathbf{X}\left(t\right) $ is SSS.


Back to ECE600

Back to General Concepts of Stochastic Processes

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood