Line 1: Line 1:
6.2 MRB 1994 Final
+
=6.2 MRB 1994 Final=
  
1. (15 pts.)
+
'''1.''' (15 pts.)
  
 
Three boxes that appear identical contain the following combinations of coins: Box X - 2 quaters; Box Y - 1 quaters, 2 dimes; Box Z - 1 quater, 1 dime. One of the boxes is selected at random, and a coin is selected at random from that box. The coin selected is a quater. What is the probability that the box selected contains at least one dime?
 
Three boxes that appear identical contain the following combinations of coins: Box X - 2 quaters; Box Y - 1 quaters, 2 dimes; Box Z - 1 quater, 1 dime. One of the boxes is selected at random, and a coin is selected at random from that box. The coin selected is a quater. What is the probability that the box selected contains at least one dime?
  
Solution
+
=Solution=
  
 
• We can define the events as
 
• We can define the events as
Line 25: Line 25:
 
<math>P\left(A|Q\right)=\frac{P\left(A\cap Q\right)}{P\left(Q\right)}=\frac{P\left(\left(Y\cup Z\right)\cap Q\right)}{P\left(Q\right)}=\frac{P\left(Y\cap Q\right)\cup P\left(Z\cap Q\right)}{P\left(Q\cap X\right)+P\left(Q\cap Y\right)+P\left(Q\cap Z\right)}</math><math>=\frac{P\left(Y\cap Q\right)+P\left(Z\cap Q\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)+P\left(Q|Z\right)}{P\left(Q|X\right)+P\left(Q|Y\right)+P\left(Q|Z\right)}=\frac{\frac{1}{3}+\frac{1}{2}}{1+\frac{1}{3}+\frac{1}{2}}=\frac{\frac{5}{6}}{\frac{11}{6}}=\frac{5}{11}.</math>  
 
<math>P\left(A|Q\right)=\frac{P\left(A\cap Q\right)}{P\left(Q\right)}=\frac{P\left(\left(Y\cup Z\right)\cap Q\right)}{P\left(Q\right)}=\frac{P\left(Y\cap Q\right)\cup P\left(Z\cap Q\right)}{P\left(Q\cap X\right)+P\left(Q\cap Y\right)+P\left(Q\cap Z\right)}</math><math>=\frac{P\left(Y\cap Q\right)+P\left(Z\cap Q\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)+P\left(Q|Z\right)}{P\left(Q|X\right)+P\left(Q|Y\right)+P\left(Q|Z\right)}=\frac{\frac{1}{3}+\frac{1}{2}}{1+\frac{1}{3}+\frac{1}{2}}=\frac{\frac{5}{6}}{\frac{11}{6}}=\frac{5}{11}.</math>  
  
2. (20 pts.)
+
'''2.''' (20 pts.)
  
 
Multiple Choice Problems: Select the single best answer to each of the following four multiple choice questions by circling the letter in fron of the answer. There is space to work out the problems on the next page if needed.
 
Multiple Choice Problems: Select the single best answer to each of the following four multiple choice questions by circling the letter in fron of the answer. There is space to work out the problems on the next page if needed.
  
I.
+
=I.=
  
 
Consider a random experiment with probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math>  and let <math>A\in\mathcal{F}</math>  and <math>B\in\mathcal{F}</math> . Let <math>P\left(A\right)=1/3 , P\left(B\right)=1/3</math> , <math>and P\left(A\cap B\right)=1/4</math> . Find <math>P\left(A|\bar{B}\right)</math> .
 
Consider a random experiment with probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math>  and let <math>A\in\mathcal{F}</math>  and <math>B\in\mathcal{F}</math> . Let <math>P\left(A\right)=1/3 , P\left(B\right)=1/3</math> , <math>and P\left(A\cap B\right)=1/4</math> . Find <math>P\left(A|\bar{B}\right)</math> .
Line 35: Line 35:
 
A. 1/12  B. 1/8  C. 1/6  D. 1/4  E. 1/3  
 
A. 1/12  B. 1/8  C. 1/6  D. 1/4  E. 1/3  
  
Solution
+
=Solution=
  
 
<math>P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}.</math>  
 
<math>P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}.</math>  
  
II.
+
=II.=
  
 
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be two jointly distributed random variables with joint pdf
 
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be two jointly distributed random variables with joint pdf
Line 52: Line 52:
 
A. <math>1/\sqrt{e}</math>  B. <math>\left(2\sqrt{e}-1\right)/2\sqrt{e}</math>  C. <math>\left(1-2\sqrt{e}\right)/2\sqrt{e}</math>  D. <math>2\sqrt{e}/\left(2\sqrt{e}-1\right)</math>  E. <math>2\sqrt{e}/\left(1-2\sqrt{e}\right)</math>  
 
A. <math>1/\sqrt{e}</math>  B. <math>\left(2\sqrt{e}-1\right)/2\sqrt{e}</math>  C. <math>\left(1-2\sqrt{e}\right)/2\sqrt{e}</math>  D. <math>2\sqrt{e}/\left(2\sqrt{e}-1\right)</math>  E. <math>2\sqrt{e}/\left(1-2\sqrt{e}\right)</math>  
  
Solution
+
=Solution=
  
 
By using Bayes' theroem,  
 
By using Bayes' theroem,  
Line 64: Line 64:
 
<math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}.</math>  
 
<math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}.</math>  
  
III.
+
=III.=
  
 
Let <math>\mathbf{X}</math>  be a random variable with mean 2 , variance 8 , and moment generating function <math>\phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\}</math>  . Find the first three terms in the series expansion of <math>\phi_{\mathbf{X}}\left(s\right)</math>  about zero. (Hint: The moment generating theorem).
 
Let <math>\mathbf{X}</math>  be a random variable with mean 2 , variance 8 , and moment generating function <math>\phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\}</math>  . Find the first three terms in the series expansion of <math>\phi_{\mathbf{X}}\left(s\right)</math>  about zero. (Hint: The moment generating theorem).
Line 74: Line 74:
 
According to the series expansion, <math>e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!}</math> .
 
According to the series expansion, <math>e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!}</math> .
  
Solution
+
=Solution=
  
 
<math>\phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}.</math>  
 
<math>\phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}.</math>  
Line 80: Line 80:
 
Since <math>E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12</math> .
 
Since <math>E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12</math> .
  
IV.
+
=IV.=
  
 
Find the characteristic function <math>\Phi\left(\omega\right)</math>  of an exponentially distributed random variable with mean <math>\mu</math> .
 
Find the characteristic function <math>\Phi\left(\omega\right)</math>  of an exponentially distributed random variable with mean <math>\mu</math> .
Line 86: Line 86:
 
A. <math>\exp\left\{ \mu\left(e^{i\omega}-1\right)\right\}</math>  B. <math>\exp\left\{ \mu e^{i\omega}\right\} -1</math>  C. <math>\left(1-i\omega\mu\right)^{-1}</math>  D. <math>\left(1+i\omega\mu\right)^{-2}</math>  E. <math>e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}}</math>  
 
A. <math>\exp\left\{ \mu\left(e^{i\omega}-1\right)\right\}</math>  B. <math>\exp\left\{ \mu e^{i\omega}\right\} -1</math>  C. <math>\left(1-i\omega\mu\right)^{-1}</math>  D. <math>\left(1+i\omega\mu\right)^{-2}</math>  E. <math>e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}}</math>  
  
Solution
+
=Solution=
  
 
<math>\Phi\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{0}^{\infty}\frac{1}{\mu}e^{-\frac{x}{\mu}}e^{i\omega x}dx=\frac{1}{\mu}\int_{0}^{\infty}e^{-x\left(1/\mu-i\omega\right)}=\frac{1}{\mu}\cdot\frac{e^{-x\left(1/\mu-i\omega\right)}}{-\left(1/\mu-i\omega\right)}\biggl|_{0}^{\infty}</math><math>=\frac{1}{\mu}\cdot\frac{1}{\left(1/\mu-i\omega\right)}=\frac{1}{1-i\omega\mu}=\left(1-i\omega\mu\right)^{-1}.</math>  
 
<math>\Phi\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{0}^{\infty}\frac{1}{\mu}e^{-\frac{x}{\mu}}e^{i\omega x}dx=\frac{1}{\mu}\int_{0}^{\infty}e^{-x\left(1/\mu-i\omega\right)}=\frac{1}{\mu}\cdot\frac{e^{-x\left(1/\mu-i\omega\right)}}{-\left(1/\mu-i\omega\right)}\biggl|_{0}^{\infty}</math><math>=\frac{1}{\mu}\cdot\frac{1}{\left(1/\mu-i\omega\right)}=\frac{1}{1-i\omega\mu}=\left(1-i\omega\mu\right)^{-1}.</math>  
Line 92: Line 92:
 
<math>\because\frac{1}{\mu}-i\omega>0</math>  because <math>i\omega</math>  is a imaginary term.
 
<math>\because\frac{1}{\mu}-i\omega>0</math>  because <math>i\omega</math>  is a imaginary term.
  
3. (15 pts.)
+
'''3.''' (15 pts.)
  
 
Let <math>\left\{ t_{k}\right\}</math>  be a set of Poisson points with parameter \lambda  on the positive real line such that if <math>\mathbf{N}\left(t_{1},t_{2}\right)</math>  is defined as the number of points in the interval <math>\left(t_{1},t_{2}\right]</math> , then
 
Let <math>\left\{ t_{k}\right\}</math>  be a set of Poisson points with parameter \lambda  on the positive real line such that if <math>\mathbf{N}\left(t_{1},t_{2}\right)</math>  is defined as the number of points in the interval <math>\left(t_{1},t_{2}\right]</math> , then
Line 120: Line 120:
 
(c) Derive an expression for the autocorrelation function of <math>\mathbf{X}\left(t\right)</math> .
 
(c) Derive an expression for the autocorrelation function of <math>\mathbf{X}\left(t\right)</math> .
  
Assume <math>t_{2}>t_{1}</math> .
+
'''Assume''' <math>t_{2}>t_{1}</math> .
  
 
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)+\mathbf{X}\left(t_{1}\right)\right]\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=\left(\lambda t_{1}\right)\lambda\left(t_{2}-t_{1}\right)+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}-\lambda^{2}t_{1}^{2}+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}+\lambda t_{1}.</math>  
 
<math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)+\mathbf{X}\left(t_{1}\right)\right]\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=\left(\lambda t_{1}\right)\lambda\left(t_{2}-t_{1}\right)+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}-\lambda^{2}t_{1}^{2}+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}+\lambda t_{1}.</math>  
Line 134: Line 134:
 
No, <math>\mathbf{X}\left(t\right)</math>  is not WSS, because <math>E\left[\mathbf{X}\left(t\right)\right]=\lambda t</math>  is not constant.
 
No, <math>\mathbf{X}\left(t\right)</math>  is not WSS, because <math>E\left[\mathbf{X}\left(t\right)\right]=\lambda t</math>  is not constant.
  
4. (15 pts.)
+
'''4.''' (15 pts.)
  
 
Let <math>\mathbf{X}</math>  be a continuous random variable with pdf <math>f_{\mathbf{X}}\left(x\right)</math> , mean <math>\mu</math> , and variance <math>\sigma^{2}</math> . Prove the Chebyshev Inequality:<math>P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}}</math>, where <math>\epsilon</math>  is any positive constant.
 
Let <math>\mathbf{X}</math>  be a continuous random variable with pdf <math>f_{\mathbf{X}}\left(x\right)</math> , mean <math>\mu</math> , and variance <math>\sigma^{2}</math> . Prove the Chebyshev Inequality:<math>P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}}</math>, where <math>\epsilon</math>  is any positive constant.
  
Solution
+
=Solution=
  
 
You can find the proof of Chebyshev inequality [CS1ChebyshevInequality].
 
You can find the proof of Chebyshev inequality [CS1ChebyshevInequality].
  
5. (15 pts.)
+
'''5.''' (15 pts.)
  
 
Let <math>\mathbf{X}\left(t\right)</math>  be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right)</math> . Suppose that <math>\mathbf{X}\left(t\right)</math>  is the input to a linear time invariant system with impulse response <math>h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right)</math>, where <math>\alpha</math>  is a positive constant. Let <math>\mathbf{Y}\left(t\right)</math>  be the output of the system and assume that the input has been applied to the system for all time.
 
Let <math>\mathbf{X}\left(t\right)</math>  be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right)</math> . Suppose that <math>\mathbf{X}\left(t\right)</math>  is the input to a linear time invariant system with impulse response <math>h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right)</math>, where <math>\alpha</math>  is a positive constant. Let <math>\mathbf{Y}\left(t\right)</math>  be the output of the system and assume that the input has been applied to the system for all time.
Line 176: Line 176:
 
<math>f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} </math><math>=\frac{1}{2\pi\frac{S_{0}}{2\alpha}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{S_{0}/2\alpha}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{S_{0}/2\alpha}+\frac{y_{2}^{2}}{S_{0}/2\alpha}\right]\right\} </math><math>=\frac{\alpha}{\pi S_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-\alpha}{S_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\}</math> .  
 
<math>f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} </math><math>=\frac{1}{2\pi\frac{S_{0}}{2\alpha}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{S_{0}/2\alpha}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{S_{0}/2\alpha}+\frac{y_{2}^{2}}{S_{0}/2\alpha}\right]\right\} </math><math>=\frac{\alpha}{\pi S_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-\alpha}{S_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\}</math> .  
  
6. (20 pts.)
+
'''6.''' (20 pts.)
  
 
(a)
 
(a)
Line 182: Line 182:
 
Let A , B , and C  be three events defined on a random experiment. If <math>P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right)</math> , then A , B , and C  are statistically independent.
 
Let A , B , and C  be three events defined on a random experiment. If <math>P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right)</math> , then A , B , and C  are statistically independent.
  
Recall
+
=Recall=
  
 
Two events A  and B  are independent iff <math>P\left(A\cap B\right)=P\left(A\right)P\left(B\right)</math> .
 
Two events A  and B  are independent iff <math>P\left(A\cap B\right)=P\left(A\right)P\left(B\right)</math> .
  
Solution
+
=Solution=
  
False. Must also know <math>P(A\cap B)=P\left(A\right)P\left(B\right)</math> , <math>P\left(B\cap C\right)=P\left(B\right)P\left(C\right)</math> , and <math>P\left(C\cap A\right)=P\left(C\right)P\left(A\right)</math> .  
+
''False.'' Must also know <math>P(A\cap B)=P\left(A\right)P\left(B\right)</math> , <math>P\left(B\cap C\right)=P\left(B\right)P\left(C\right)</math> , and <math>P\left(C\cap A\right)=P\left(C\right)P\left(A\right)</math> .  
  
 
(b)
 
(b)
Line 194: Line 194:
 
If the autocorrelation function <math>R_{\mathbf{X}}\left(t_{1},t_{2}\right)</math>  of random process <math>\mathbf{X}\left(t\right)</math>  can be written as a function of the time difference <math>t_{2}-t_{1}</math> , then <math>\mathbf{X}\left(t\right)</math>  is wide-sense stationary.
 
If the autocorrelation function <math>R_{\mathbf{X}}\left(t_{1},t_{2}\right)</math>  of random process <math>\mathbf{X}\left(t\right)</math>  can be written as a function of the time difference <math>t_{2}-t_{1}</math> , then <math>\mathbf{X}\left(t\right)</math>  is wide-sense stationary.
  
Solution
+
=Solution=
  
False. <math>E\left[\mathbf{X}\left(t\right)\right]</math>  must also be constant.
+
''False.'' <math>E\left[\mathbf{X}\left(t\right)\right]</math>  must also be constant.
  
 
(c)
 
(c)
Line 202: Line 202:
 
All stationary random processes are wide-sense stationary.
 
All stationary random processes are wide-sense stationary.
  
Solution
+
=Solution=
  
True.
+
''True.''
  
 
(d)
 
(d)
Line 210: Line 210:
 
The autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)</math>  of a real wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  is nonnegative for all <math>\tau</math> .
 
The autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)</math>  of a real wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  is nonnegative for all <math>\tau</math> .
  
Solution
+
=Solution=
  
False. <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is non-negative definite. However, it does not mean that <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is nonnegative.
+
''False.'' <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is non-negative definite. However, it does not mean that <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  is nonnegative.
  
 
(e)
 
(e)
Line 218: Line 218:
 
Let <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)=0</math>  for all <math>\tau</math> .
 
Let <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)=0</math>  for all <math>\tau</math> .
  
Solution
+
=Solution=
  
True.
+
''True.''
  
 
<math>R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0.</math>  
 
<math>R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0.</math>  
Line 228: Line 228:
 
The cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)</math>  of two real, jointly wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  has its peak value at <math>\tau=0</math> .
 
The cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)</math>  of two real, jointly wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{Y}\left(t\right)</math>  has its peak value at <math>\tau=0</math> .
  
Solution
+
=Solution=
  
False. Consider <math>\mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right)</math>  where <math>\delta\neq0</math> .
+
''False.'' Consider <math>\mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right)</math>  where <math>\delta\neq0</math> .
  
 
(g)
 
(g)
Line 236: Line 236:
 
The power spectral density of a real, wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  is a non-negative even function of <math>\omega</math> .
 
The power spectral density of a real, wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math>  is a non-negative even function of <math>\omega</math> .
  
Solution
+
=Solution=
  
True.
+
''True.''
  
 
(h)
 
(h)
Line 244: Line 244:
 
If <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are two statistically independent random variables, then <math>f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right)</math> .
 
If <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are two statistically independent random variables, then <math>f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right)</math> .
  
Solution.
+
=Solution.=
  
True. <math>P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right).</math>  
+
''True.'' <math>P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right).</math>  
  
 
<math>f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right).</math>  
 
<math>f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right).</math>  
Line 254: Line 254:
 
If <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are two random variables, and <math>f_{X}\left(x|y\right)=f_{X}\left(x\right)</math> , then <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are statistically independent.
 
If <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are two random variables, and <math>f_{X}\left(x|y\right)=f_{X}\left(x\right)</math> , then <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are statistically independent.
  
Solution
+
=Solution=
  
True.
+
''True.''
  
 
(j)
 
(j)
Line 262: Line 262:
 
If <math>\left\{ \mathbf{X}_{n}\right\}</math>  is a sequence of random variables that converges to a random variable <math>\mathbf{X}</math>  as <math>n\rightarrow\infty</math> , then <math>\left\{ \mathbf{X}_{n}\right\}</math>  converges to <math>\mathbf{X}</math>  in the means-square sense.
 
If <math>\left\{ \mathbf{X}_{n}\right\}</math>  is a sequence of random variables that converges to a random variable <math>\mathbf{X}</math>  as <math>n\rightarrow\infty</math> , then <math>\left\{ \mathbf{X}_{n}\right\}</math>  converges to <math>\mathbf{X}</math>  in the means-square sense.
  
Solution
+
=Solution=
  
False. The explanation at first is about converge in almost everywhere. <math>\left(a.e.\right)\nRightarrow\left(m.s.\right)</math>  and <math>\left(m.s.\right)\nRightarrow\left(a.e.\right)</math> .
+
''False.'' The explanation at first is about converge in almost everywhere. <math>\left(a.e.\right)\nRightarrow\left(m.s.\right)</math>  and <math>\left(m.s.\right)\nRightarrow\left(a.e.\right)</math> .
  
 
----
 
----

Revision as of 13:13, 21 November 2010

6.2 MRB 1994 Final

1. (15 pts.)

Three boxes that appear identical contain the following combinations of coins: Box X - 2 quaters; Box Y - 1 quaters, 2 dimes; Box Z - 1 quater, 1 dime. One of the boxes is selected at random, and a coin is selected at random from that box. The coin selected is a quater. What is the probability that the box selected contains at least one dime?

Solution

• We can define the events as

– A = Box selected at random contains at least one dime.

– Q = Coin drawn from box selected is a quater.

– X = Box X is selected.

– Y = Box Y is selected.

– Z = Box Z is selected.

• From the given information, we have $ P\left(X\right)=P\left(Y\right)=P\left(Z\right)=1/3 . P\left(Q|X\right)=1,P\left(Q|Y\right)=1/3,P\left(Q|Z\right)=1/2 $ .

• By using Bayes' theorem, $ P\left(A|Q\right) $ is

$ P\left(A|Q\right)=\frac{P\left(A\cap Q\right)}{P\left(Q\right)}=\frac{P\left(\left(Y\cup Z\right)\cap Q\right)}{P\left(Q\right)}=\frac{P\left(Y\cap Q\right)\cup P\left(Z\cap Q\right)}{P\left(Q\cap X\right)+P\left(Q\cap Y\right)+P\left(Q\cap Z\right)} $$ =\frac{P\left(Y\cap Q\right)+P\left(Z\cap Q\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)} $$ =\frac{P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)} $$ =\frac{P\left(Q|Y\right)+P\left(Q|Z\right)}{P\left(Q|X\right)+P\left(Q|Y\right)+P\left(Q|Z\right)}=\frac{\frac{1}{3}+\frac{1}{2}}{1+\frac{1}{3}+\frac{1}{2}}=\frac{\frac{5}{6}}{\frac{11}{6}}=\frac{5}{11}. $

2. (20 pts.)

Multiple Choice Problems: Select the single best answer to each of the following four multiple choice questions by circling the letter in fron of the answer. There is space to work out the problems on the next page if needed.

I.

Consider a random experiment with probability space $ \left(\mathcal{S},\mathcal{F},P\right) $ and let $ A\in\mathcal{F} $ and $ B\in\mathcal{F} $ . Let $ P\left(A\right)=1/3 , P\left(B\right)=1/3 $ , $ and P\left(A\cap B\right)=1/4 $ . Find $ P\left(A|\bar{B}\right) $ .

A. 1/12 B. 1/8 C. 1/6 D. 1/4 E. 1/3

Solution

$ P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}. $

II.

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly distributed random variables with joint pdf

$ f\left(x,y\right)=\left\{ \begin{array}{lll} e^{-\left(x+y\right)} \text{, for }x\geq0\text{ and }y\geq0,\\ 0 \text{, elsewhere.} \end{array}\right. $

Find $ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>1/2\right\} \right) $ .

A. $ 1/\sqrt{e} $ B. $ \left(2\sqrt{e}-1\right)/2\sqrt{e} $ C. $ \left(1-2\sqrt{e}\right)/2\sqrt{e} $ D. $ 2\sqrt{e}/\left(2\sqrt{e}-1\right) $ E. $ 2\sqrt{e}/\left(1-2\sqrt{e}\right) $

Solution

By using Bayes' theroem,

$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}{P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}. $

$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}\int_{0}^{x}e^{-\left(x+y\right)}dydx=\int_{1/2}^{\infty}-e^{-\left(x+y\right)}\Bigl|_{0}^{x}dx $$ =\int_{1/2}^{\infty}\left[e^{-x}-e^{-2x}\right]dx=-e^{-x}+\frac{1}{2}e^{-2x}\Bigl|_{1/2}^{\infty}=e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}. $

$ P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}e^{-\left(x+y\right)}dx=-e^{-\left(x+y\right)}\Bigl|_{1/2}^{\infty}=e^{-\left(\frac{1}{2}+y\right)}. $

$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}. $

III.

Let $ \mathbf{X} $ be a random variable with mean 2 , variance 8 , and moment generating function $ \phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\} $ . Find the first three terms in the series expansion of $ \phi_{\mathbf{X}}\left(s\right) $ about zero. (Hint: The moment generating theorem).

A. $ 2s+2s^{2} $ B. $ 1+2s+6s^{2} $ C. $ 1+2s+2s^{2} $ D. $ 1+2s+4s^{2} $ E. $ 1+2s+12s^{2} $

Recall

According to the series expansion, $ e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!} $ .

Solution

$ \phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}. $

Since $ E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12 $ .

IV.

Find the characteristic function $ \Phi\left(\omega\right) $ of an exponentially distributed random variable with mean $ \mu $ .

A. $ \exp\left\{ \mu\left(e^{i\omega}-1\right)\right\} $ B. $ \exp\left\{ \mu e^{i\omega}\right\} -1 $ C. $ \left(1-i\omega\mu\right)^{-1} $ D. $ \left(1+i\omega\mu\right)^{-2} $ E. $ e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}} $

Solution

$ \Phi\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{0}^{\infty}\frac{1}{\mu}e^{-\frac{x}{\mu}}e^{i\omega x}dx=\frac{1}{\mu}\int_{0}^{\infty}e^{-x\left(1/\mu-i\omega\right)}=\frac{1}{\mu}\cdot\frac{e^{-x\left(1/\mu-i\omega\right)}}{-\left(1/\mu-i\omega\right)}\biggl|_{0}^{\infty} $$ =\frac{1}{\mu}\cdot\frac{1}{\left(1/\mu-i\omega\right)}=\frac{1}{1-i\omega\mu}=\left(1-i\omega\mu\right)^{-1}. $

$ \because\frac{1}{\mu}-i\omega>0 $ because $ i\omega $ is a imaginary term.

3. (15 pts.)

Let $ \left\{ t_{k}\right\} $ be a set of Poisson points with parameter \lambda on the positive real line such that if $ \mathbf{N}\left(t_{1},t_{2}\right) $ is defined as the number of points in the interval $ \left(t_{1},t_{2}\right] $ , then

$ P\left(\left\{ \mathbf{N}\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!},\quad k=0,1,2,\cdots,\quad t_{2}>t_{1}\geq0. $

Let $ \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right) $ be the Poisson counting process associated with these points for $ t>0\;\left(n.b.,\;\mathbf{X}\left(0\right)=0\right) $

(a) Find the mean of $ \mathbf{X}\left(t\right) $ .

$ \Phi_{\mathbf{X}\left(t\right)}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}\left(t\right)}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left[e^{i\omega}\lambda t\right]^{k}}{k!}=e^{\lambda t\left[e^{i\omega}-1\right]}. $

$ \phi_{\mathbf{X}}\left(s\right)=e^{\lambda t\left[e^{s}-1\right]}. $

$ E\left[\mathbf{X}\left(t\right)\right]=\frac{d\phi_{\mathbf{X}}\left(s\right)}{ds}\biggl|_{s=0}=e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\biggl|_{s=0}=\lambda t. $

Alternative solution: $ \mathbf{X}\left(t\right) $ is Poisson process with parameter $ \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t $ .

(b) Find the variance of $ \mathbf{X}\left(t\right) $ .

$ E\left[\mathbf{X}\left(t\right)^{2}\right]=\frac{d^{2}\phi_{\mathbf{X}\left(t\right)}\left(s\right)}{ds^{2}}\left|_{s=0}\right.=\frac{d}{ds}\left[e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\right]\left|_{s=0}\right.=\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}+\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\left|_{s=0}\right.=\left(\lambda t\right)^{2}+\lambda t. $

$ Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)^{2}\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t. $

Alternative solution: $ \mathbf{X}\left(t\right) $ is Poisson process with parameter $ \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t . $

(c) Derive an expression for the autocorrelation function of $ \mathbf{X}\left(t\right) $ .

Assume $ t_{2}>t_{1} $ .

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)+\mathbf{X}\left(t_{1}\right)\right]\right] $$ =E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right] $$ =E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right] $$ =\left(\lambda t_{1}\right)\lambda\left(t_{2}-t_{1}\right)+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}-\lambda^{2}t_{1}^{2}+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}+\lambda t_{1}. $

Similarly, for $ t_{2}<t_{1} $ , $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda t_{2} $ .

$ \therefore R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda\min\left(t_{1},t_{2}\right). $

$ \because $ Recall: $ Var\left[\mathbf{X}\left(t_{1}\right)\right]=E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]-\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2}\Longrightarrow E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]=Var\left[\mathbf{X}\left(t_{1}\right)\right]+\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2} $ .

(d) Is $ \mathbf{X}\left(t\right) $ wide-sense stationary? Explain your answer.

No, $ \mathbf{X}\left(t\right) $ is not WSS, because $ E\left[\mathbf{X}\left(t\right)\right]=\lambda t $ is not constant.

4. (15 pts.)

Let $ \mathbf{X} $ be a continuous random variable with pdf $ f_{\mathbf{X}}\left(x\right) $ , mean $ \mu $ , and variance $ \sigma^{2} $ . Prove the Chebyshev Inequality:$ P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}} $, where $ \epsilon $ is any positive constant.

Solution

You can find the proof of Chebyshev inequality [CS1ChebyshevInequality].

5. (15 pts.)

Let $ \mathbf{X}\left(t\right) $ be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right) $ . Suppose that $ \mathbf{X}\left(t\right) $ is the input to a linear time invariant system with impulse response $ h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right) $, where $ \alpha $ is a positive constant. Let $ \mathbf{Y}\left(t\right) $ be the output of the system and assume that the input has been applied to the system for all time.

(a) What is the mean of $ \mathbf{Y}\left(t\right) $ ?

$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}h\left(\tau\right)\mathbf{X}\left(t-\tau\right)d\tau\right]=\int_{-\infty}^{\infty}h\left(\tau\right)E\left[\mathbf{X}\left(t-\tau\right)\right]d\tau=\int_{-\infty}^{\infty}h\left(\tau\right)\cdot0d\tau=0. $

(b) What is the power spectral density of $ \mathbf{Y}\left(t\right) $ ?

$ S_{\mathbf{XX}}\left(\omega\right)=\int_{-\infty}^{\infty}S_{0}\delta\left(\tau\right)e^{-i\omega\tau}d\tau=S_{0}. $

$ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)}\biggl|_{0}^{\infty}=\frac{1}{\alpha+i\omega}. $

$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}=S_{\mathbf{XX}}\left(\omega\right)H\left(\omega\right)H^{*}\left(\omega\right)=S_{0}\cdot\frac{1}{\alpha+i\omega}\cdot\frac{1}{\alpha-i\omega}=\frac{S_{0}}{\alpha^{2}+\omega^{2}}. $

(c) What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?

$ S_{\mathbf{YY}}\left(\omega\right)=\frac{S_{0}}{\alpha^{2}+\omega^{2}}=\left(\frac{S_{0}}{2\alpha}\right)\frac{2\alpha}{\alpha^{2}+\omega^{2}}\leftrightarrow\left(\frac{S_{0}}{2\alpha}\right)e^{-\alpha\left|\tau\right|}=R_{\mathbf{YY}}\left(\tau\right). $

$ \because e^{-\alpha\left|\tau\right|}\leftrightarrow\frac{2\alpha}{\alpha^{2}+\omega^{2}}\text{ (on the table given)}. $

If there is no table, then

$ R_{\mathbf{YY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{YY}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{S_{0}}{\alpha^{2}+\omega^{2}}\cdot e^{i\omega\tau}d\omega. $

(d) Write an expression for the second-order density $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ .

$ \mathbf{Y}\left(t\right) $ is a WSS Gaussian random process with $ E\left[\mathbf{Y}\left(t\right)\right]=0 , \sigma_{\mathbf{Y}\left(t\right)}^{2}=R_{\mathbf{YY}}\left(0\right)=\frac{S_{0}}{2\alpha} $ .

$ r_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}=r\left(t_{1}-t_{2}\right)=\frac{C_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{\sqrt{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}}=\frac{R_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{R_{\mathbf{YY}}\left(0\right)}=e^{-\alpha\left|t_{1}-t_{2}\right|}. $

$ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} $$ =\frac{1}{2\pi\frac{S_{0}}{2\alpha}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{S_{0}/2\alpha}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{S_{0}/2\alpha}+\frac{y_{2}^{2}}{S_{0}/2\alpha}\right]\right\} $$ =\frac{\alpha}{\pi S_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-\alpha}{S_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\} $ .

6. (20 pts.)

(a)

Let A , B , and C be three events defined on a random experiment. If $ P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right) $ , then A , B , and C are statistically independent.

Recall

Two events A and B are independent iff $ P\left(A\cap B\right)=P\left(A\right)P\left(B\right) $ .

Solution

False. Must also know $ P(A\cap B)=P\left(A\right)P\left(B\right) $ , $ P\left(B\cap C\right)=P\left(B\right)P\left(C\right) $ , and $ P\left(C\cap A\right)=P\left(C\right)P\left(A\right) $ .

(b)

If the autocorrelation function $ R_{\mathbf{X}}\left(t_{1},t_{2}\right) $ of random process $ \mathbf{X}\left(t\right) $ can be written as a function of the time difference $ t_{2}-t_{1} $ , then $ \mathbf{X}\left(t\right) $ is wide-sense stationary.

Solution

False. $ E\left[\mathbf{X}\left(t\right)\right] $ must also be constant.

(c)

All stationary random processes are wide-sense stationary.

Solution

True.

(d)

The autocorrelation function $ R_{\mathbf{XX}}\left(\tau\right) $ of a real wide-sense stationary random process $ \mathbf{X}\left(t\right) $ is nonnegative for all $ \tau $ .

Solution

False. $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is non-negative definite. However, it does not mean that $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is nonnegative.

(e)

Let $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function $ R_{\mathbf{XY}}\left(\tau\right)=0 $ for all $ \tau $ .

Solution

True.

$ R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0. $

(f)

The cross-correlation function $ R_{\mathbf{XY}}\left(\tau\right) $ of two real, jointly wide-sense stationary random process $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ has its peak value at $ \tau=0 $ .

Solution

False. Consider $ \mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right) $ where $ \delta\neq0 $ .

(g)

The power spectral density of a real, wide-sense stationary random process $ \mathbf{X}\left(t\right) $ is a non-negative even function of $ \omega $ .

Solution

True.

(h)

If $ \mathbf{X} $ and $ \mathbf{Y} $ are two statistically independent random variables, then $ f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right) $ .

Solution.

True. $ P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right). $

$ f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right). $

(i)

If $ \mathbf{X} $ and $ \mathbf{Y} $ are two random variables, and $ f_{X}\left(x|y\right)=f_{X}\left(x\right) $ , then $ \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent.

Solution

True.

(j)

If $ \left\{ \mathbf{X}_{n}\right\} $ is a sequence of random variables that converges to a random variable $ \mathbf{X} $ as $ n\rightarrow\infty $ , then $ \left\{ \mathbf{X}_{n}\right\} $ converges to $ \mathbf{X} $ in the means-square sense.

Solution

False. The explanation at first is about converge in almost everywhere. $ \left(a.e.\right)\nRightarrow\left(m.s.\right) $ and $ \left(m.s.\right)\nRightarrow\left(a.e.\right) $ .


Back to ECE600

Back to ECE 600 Finals

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics