(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
=Example. Sequence of binomially distributed random variables=
 
=Example. Sequence of binomially distributed random variables=
  
Let <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  be a sequence of binomially distributed random variables, with the <math>n_{th}</math>  random variable <math>\mathbf{X}_{n}</math>  having pmf
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  be a sequence of binomially distributed random variables, with the <math class="inline">n_{th}</math>  random variable <math class="inline">\mathbf{X}_{n}</math>  having pmf
  
<math>P_{\mathbf{X}_{n}}(k)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
+
<math class="inline">P_{\mathbf{X}_{n}}(k)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
 
n\\
 
n\\
 
k
 
k
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\; k=0,1,\cdots,n,\; p_{n}\in\left(0,1\right).</math> Show that, if the <math>p_{n}</math>  have the property that <math>np_{n}\rightarrow\lambda</math>  as <math>n\rightarrow\infty</math> , where <math>\lambda</math>  is a positive constant, then the sequence <math>\left\{ \mathbf{X}_{n}\right\} _{n\leq1}</math>  converges in distribution to a Poisson random variable <math>\mathbf{X}</math>  with mean <math>\lambda</math> .  
+
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\; k=0,1,\cdots,n,\; p_{n}\in\left(0,1\right).</math> Show that, if the <math class="inline">p_{n}</math>  have the property that <math class="inline">np_{n}\rightarrow\lambda</math>  as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math>  is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\leq1}</math>  converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math>  with mean <math class="inline">\lambda</math> .  
  
 
Hint:  
 
Hint:  
Line 12: Line 12:
 
You may find the following fact useful:
 
You may find the following fact useful:
  
<math>\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
+
<math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
  
 
Solution
 
Solution
  
If <math>\mathbf{X}_{n}</math>  converges to <math>\mathbf{X}</math>  in distribution, then <math>F_{\mathbf{X}_{n}}(x)\rightarrow F_{\mathbf{X}}(x)</math><math>  \forall x\in\mathbf{R}</math> , where <math>F_{\mathbf{X}}(x)</math>  is continuous. This occurs iff <math>\Phi_{\mathbf{X}_{n}}(\omega)\rightarrow\Phi_{\mathbf{X}}(\omega)</math><math>  \forall x\in\mathbf{R}</math> . We will show that <math>\Phi_{\mathbf{X}_{n}}(\omega)</math>  converges to <math>e^{-\lambda\left(1-e^{i\omega}\right)}</math>  as <math>n\rightarrow\infty</math> , which is the characteristic function of a Poisson random variable with mean <math>\lambda</math> .
+
If <math class="inline">\mathbf{X}_{n}</math>  converges to <math class="inline">\mathbf{X}</math>  in distribution, then <math class="inline">F_{\mathbf{X}_{n}}(x)\rightarrow F_{\mathbf{X}}(x)</math><math class="inline">  \forall x\in\mathbf{R}</math> , where <math class="inline">F_{\mathbf{X}}(x)</math>  is continuous. This occurs iff <math class="inline">\Phi_{\mathbf{X}_{n}}(\omega)\rightarrow\Phi_{\mathbf{X}}(\omega)</math><math class="inline">  \forall x\in\mathbf{R}</math> . We will show that <math class="inline">\Phi_{\mathbf{X}_{n}}(\omega)</math>  converges to <math class="inline">e^{-\lambda\left(1-e^{i\omega}\right)}</math>  as <math class="inline">n\rightarrow\infty</math> , which is the characteristic function of a Poisson random variable with mean <math class="inline">\lambda</math> .
  
<math>\Phi_{\mathbf{X}_{n}}(\omega)=E\left[e^{i\omega\mathbf{X}_{n}}\right]=\sum_{k=0}^{n}e^{i\omega k}\left(\begin{array}{c}
+
<math class="inline">\Phi_{\mathbf{X}_{n}}(\omega)=E\left[e^{i\omega\mathbf{X}_{n}}\right]=\sum_{k=0}^{n}e^{i\omega k}\left(\begin{array}{c}
 
n\\
 
n\\
 
k
 
k
Line 24: Line 24:
 
n\\
 
n\\
 
k
 
k
\end{array}\right)\left(p_{n}e^{i\omega}\right)^{k}\left(1-p_{n}\right)^{n-k}</math><math>=\left(p_{n}e^{i\omega}+1-p_{n}\right)^{n}=\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}.</math>  
+
\end{array}\right)\left(p_{n}e^{i\omega}\right)^{k}\left(1-p_{n}\right)^{n-k}</math><math class="inline">=\left(p_{n}e^{i\omega}+1-p_{n}\right)^{n}=\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}.</math>  
  
Now as <math>n\rightarrow\infty</math> , <math>np_{n}\rightarrow\lambda\Rightarrow p_{n}\rightarrow\frac{\lambda}{n}</math> .
+
Now as <math class="inline">n\rightarrow\infty</math> , <math class="inline">np_{n}\rightarrow\lambda\Rightarrow p_{n}\rightarrow\frac{\lambda}{n}</math> .
  
<math>\lim_{n\rightarrow\infty}\Phi_{\mathbf{X}_{n}}(\omega)=\lim_{n\rightarrow\infty}\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}=\lim_{n\rightarrow\infty}\left(1+\frac{\lambda}{n}\left(e^{i\omega}-1\right)\right)^{n}=e^{\lambda\left(e^{i\omega}-1\right)}=e^{-\lambda\left(1-e^{i\omega}\right)},</math>  
+
<math class="inline">\lim_{n\rightarrow\infty}\Phi_{\mathbf{X}_{n}}(\omega)=\lim_{n\rightarrow\infty}\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}=\lim_{n\rightarrow\infty}\left(1+\frac{\lambda}{n}\left(e^{i\omega}-1\right)\right)^{n}=e^{\lambda\left(e^{i\omega}-1\right)}=e^{-\lambda\left(1-e^{i\omega}\right)},</math>  
  
which is the characteristic function of Poisson random variable with mean <math>\lambda</math> .
+
which is the characteristic function of Poisson random variable with mean <math class="inline">\lambda</math> .
  
 
c.f.
 
c.f.
  
The problem 2 of the August 2007 QE [CS1QE2007August] is identical to this example.
+
The problem 2 of the [[ECE600 QE 2007 August|August 2007 QE]] is identical to this example.
  
 
----
 
----

Latest revision as of 12:14, 30 November 2010

Example. Sequence of binomially distributed random variables

Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n_{th} $ random variable $ \mathbf{X}_{n} $ having pmf

$ P_{\mathbf{X}_{n}}(k)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\; k=0,1,\cdots,n,\; p_{n}\in\left(0,1\right). $ Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\leq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .

Hint:

You may find the following fact useful:

$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $

Solution

If $ \mathbf{X}_{n} $ converges to $ \mathbf{X} $ in distribution, then $ F_{\mathbf{X}_{n}}(x)\rightarrow F_{\mathbf{X}}(x) $$ \forall x\in\mathbf{R} $ , where $ F_{\mathbf{X}}(x) $ is continuous. This occurs iff $ \Phi_{\mathbf{X}_{n}}(\omega)\rightarrow\Phi_{\mathbf{X}}(\omega) $$ \forall x\in\mathbf{R} $ . We will show that $ \Phi_{\mathbf{X}_{n}}(\omega) $ converges to $ e^{-\lambda\left(1-e^{i\omega}\right)} $ as $ n\rightarrow\infty $ , which is the characteristic function of a Poisson random variable with mean $ \lambda $ .

$ \Phi_{\mathbf{X}_{n}}(\omega)=E\left[e^{i\omega\mathbf{X}_{n}}\right]=\sum_{k=0}^{n}e^{i\omega k}\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\sum_{k=0}^{n}\left(\begin{array}{c} n\\ k \end{array}\right)\left(p_{n}e^{i\omega}\right)^{k}\left(1-p_{n}\right)^{n-k} $$ =\left(p_{n}e^{i\omega}+1-p_{n}\right)^{n}=\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}. $

Now as $ n\rightarrow\infty $ , $ np_{n}\rightarrow\lambda\Rightarrow p_{n}\rightarrow\frac{\lambda}{n} $ .

$ \lim_{n\rightarrow\infty}\Phi_{\mathbf{X}_{n}}(\omega)=\lim_{n\rightarrow\infty}\left(1+p_{n}\left(e^{i\omega}-1\right)\right)^{n}=\lim_{n\rightarrow\infty}\left(1+\frac{\lambda}{n}\left(e^{i\omega}-1\right)\right)^{n}=e^{\lambda\left(e^{i\omega}-1\right)}=e^{-\lambda\left(1-e^{i\omega}\right)}, $

which is the characteristic function of Poisson random variable with mean $ \lambda $ .

c.f.

The problem 2 of the August 2007 QE is identical to this example.


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett