Line 21: Line 21:
 
<math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}.</math>  
 
<math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}.</math>  
  
(b) Now assume that the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  are identically distributed with with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , but they are only correlated rather than independent. Find the variance of <math class="inline">\mathbf{Y}_{M}</math> .
+
(b) Now assume that the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  are identically distributed with with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , but they are only uncorrelated rather than independent. Find the variance of <math class="inline">\mathbf{Y}_{M}</math> .
  
 
Again, <math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M}</math> , because only uncorrelatedness was used in part (a).
 
Again, <math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M}</math> , because only uncorrelatedness was used in part (a).

Latest revision as of 11:25, 16 July 2012

Example. Mean of i.i.d. random variables

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ be $ M $ jointly distributed i.i.d. random variables with mean $ \mu $ and variance $ \sigma^{2} $ . Let $ \mathbf{Y}_{M}=\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n} $ .

(a) Find the variance of $ \mathbf{Y}_{M} $ .

$ Var\left[\mathbf{Y}_{M}\right]=E\left[\mathbf{Y}_{M}^{2}\right]-\left(E\left[\mathbf{Y}_{M}\right]\right)^{2}. $

$ E\left[\mathbf{Y}_{M}\right]=E\left[\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}\right]=\frac{1}{M}\sum_{n=0}^{M}E\left[\mathbf{X}_{n}\right]=\frac{1}{M}\cdot M\cdot\mu=\mu. $

$ E\left[\mathbf{Y}_{M}^{2}\right]=E\left[\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}\mathbf{X}_{m}\mathbf{X}_{n}\right]=\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]. $

Now $ E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]=\begin{cases} \begin{array}{ll} E\left[\mathbf{X}_{m}^{2}\right] ,m=n\\ E\left[\mathbf{X}_{m}\right]E\left[\mathbf{X}_{n}\right] ,m\neq n \end{array}\end{cases} $ because when $ m\neq n $ , $ \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are independent $ \Rightarrow \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are uncorrelated.

$ E\left[\mathbf{Y}_{M}^{2}\right]=\frac{1}{M^{2}}\left[M\left(\mu^{2}+\sigma^{2}\right)+M\left(M-1\right)\mu^{2}\right]=\frac{\left(\mu^{2}+\sigma^{2}\right)+\left(M-1\right)\mu^{2}}{M}=\frac{M\mu^{2}+\sigma^{2}}{M}. $

$ Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}. $

(b) Now assume that the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ are identically distributed with with mean $ \mu $ and variance $ \sigma^{2} $ , but they are only uncorrelated rather than independent. Find the variance of $ \mathbf{Y}_{M} $ .

Again, $ Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M} $ , because only uncorrelatedness was used in part (a).


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang