Line 1: Line 1:
 
=Example. Mean of i.i.d.  random variables=
 
=Example. Mean of i.i.d.  random variables=
  
Let <math>\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  be <math>M</math>  jointly distributed i.i.d.  random variables with mean <math>\mu</math>  and variance <math>\sigma^{2}</math> . Let <math>\mathbf{Y}_{M}=\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}</math> .
+
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  be <math class="inline">M</math>  jointly distributed i.i.d.  random variables with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> . Let <math class="inline">\mathbf{Y}_{M}=\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}</math> .
  
(a) Find the variance of <math>\mathbf{Y}_{M}</math> .
+
(a) Find the variance of <math class="inline">\mathbf{Y}_{M}</math> .
  
<math>Var\left[\mathbf{Y}_{M}\right]=E\left[\mathbf{Y}_{M}^{2}\right]-\left(E\left[\mathbf{Y}_{M}\right]\right)^{2}. </math>
+
<math class="inline">Var\left[\mathbf{Y}_{M}\right]=E\left[\mathbf{Y}_{M}^{2}\right]-\left(E\left[\mathbf{Y}_{M}\right]\right)^{2}. </math>
  
<math>E\left[\mathbf{Y}_{M}\right]=E\left[\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}\right]=\frac{1}{M}\sum_{n=0}^{M}E\left[\mathbf{X}_{n}\right]=\frac{1}{M}\cdot M\cdot\mu=\mu.</math>  
+
<math class="inline">E\left[\mathbf{Y}_{M}\right]=E\left[\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}\right]=\frac{1}{M}\sum_{n=0}^{M}E\left[\mathbf{X}_{n}\right]=\frac{1}{M}\cdot M\cdot\mu=\mu.</math>  
  
<math>E\left[\mathbf{Y}_{M}^{2}\right]=E\left[\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}\mathbf{X}_{m}\mathbf{X}_{n}\right]=\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right].</math>  
+
<math class="inline">E\left[\mathbf{Y}_{M}^{2}\right]=E\left[\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}\mathbf{X}_{m}\mathbf{X}_{n}\right]=\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right].</math>  
  
Now <math>E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]=\begin{cases}
+
Now <math class="inline">E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]=\begin{cases}
 
\begin{array}{ll}
 
\begin{array}{ll}
 
E\left[\mathbf{X}_{m}^{2}\right]  ,m=n\\
 
E\left[\mathbf{X}_{m}^{2}\right]  ,m=n\\
 
E\left[\mathbf{X}_{m}\right]E\left[\mathbf{X}_{n}\right]  ,m\neq n
 
E\left[\mathbf{X}_{m}\right]E\left[\mathbf{X}_{n}\right]  ,m\neq n
\end{array}\end{cases}</math>  because when <math>m\neq n</math> , <math>\mathbf{X}_{m}</math>  and <math>\mathbf{X}_{n}</math>  are independent <math>\Rightarrow  \mathbf{X}_{m}</math>  and <math>\mathbf{X}_{n}</math>  are uncorrelated.
+
\end{array}\end{cases}</math>  because when <math class="inline">m\neq n</math> , <math class="inline">\mathbf{X}_{m}</math>  and <math class="inline">\mathbf{X}_{n}</math>  are independent <math class="inline">\Rightarrow  \mathbf{X}_{m}</math>  and <math class="inline">\mathbf{X}_{n}</math>  are uncorrelated.
  
<math>E\left[\mathbf{Y}_{M}^{2}\right]=\frac{1}{M^{2}}\left[M\left(\mu^{2}+\sigma^{2}\right)+M\left(M-1\right)\mu^{2}\right]=\frac{\left(\mu^{2}+\sigma^{2}\right)+\left(M-1\right)\mu^{2}}{M}=\frac{M\mu^{2}+\sigma^{2}}{M}.</math>  
+
<math class="inline">E\left[\mathbf{Y}_{M}^{2}\right]=\frac{1}{M^{2}}\left[M\left(\mu^{2}+\sigma^{2}\right)+M\left(M-1\right)\mu^{2}\right]=\frac{\left(\mu^{2}+\sigma^{2}\right)+\left(M-1\right)\mu^{2}}{M}=\frac{M\mu^{2}+\sigma^{2}}{M}.</math>  
  
<math>Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}.</math>  
+
<math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}.</math>  
  
(b) Now assume that the <math>\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  are identically distributed with with mean <math>\mu</math>  and variance <math>\sigma^{2}</math> , but they are only correlated rather than independent. Find the variance of <math>\mathbf{Y}_{M}</math> .
+
(b) Now assume that the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n}</math>  are identically distributed with with mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> , but they are only correlated rather than independent. Find the variance of <math class="inline">\mathbf{Y}_{M}</math> .
  
Again, <math>Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M}</math> , because only uncorrelatedness was used in part (a).
+
Again, <math class="inline">Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M}</math> , because only uncorrelatedness was used in part (a).
  
 
----
 
----

Revision as of 07:14, 1 December 2010

Example. Mean of i.i.d. random variables

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ be $ M $ jointly distributed i.i.d. random variables with mean $ \mu $ and variance $ \sigma^{2} $ . Let $ \mathbf{Y}_{M}=\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n} $ .

(a) Find the variance of $ \mathbf{Y}_{M} $ .

$ Var\left[\mathbf{Y}_{M}\right]=E\left[\mathbf{Y}_{M}^{2}\right]-\left(E\left[\mathbf{Y}_{M}\right]\right)^{2}. $

$ E\left[\mathbf{Y}_{M}\right]=E\left[\frac{1}{M}\sum_{n=0}^{M}\mathbf{X}_{n}\right]=\frac{1}{M}\sum_{n=0}^{M}E\left[\mathbf{X}_{n}\right]=\frac{1}{M}\cdot M\cdot\mu=\mu. $

$ E\left[\mathbf{Y}_{M}^{2}\right]=E\left[\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}\mathbf{X}_{m}\mathbf{X}_{n}\right]=\frac{1}{M^{2}}\sum_{m=1}^{M}\sum_{n=1}^{M}E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]. $

Now $ E\left[\mathbf{X}_{m}\mathbf{X}_{n}\right]=\begin{cases} \begin{array}{ll} E\left[\mathbf{X}_{m}^{2}\right] ,m=n\\ E\left[\mathbf{X}_{m}\right]E\left[\mathbf{X}_{n}\right] ,m\neq n \end{array}\end{cases} $ because when $ m\neq n $ , $ \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are independent $ \Rightarrow \mathbf{X}_{m} $ and $ \mathbf{X}_{n} $ are uncorrelated.

$ E\left[\mathbf{Y}_{M}^{2}\right]=\frac{1}{M^{2}}\left[M\left(\mu^{2}+\sigma^{2}\right)+M\left(M-1\right)\mu^{2}\right]=\frac{\left(\mu^{2}+\sigma^{2}\right)+\left(M-1\right)\mu^{2}}{M}=\frac{M\mu^{2}+\sigma^{2}}{M}. $

$ Var\left[\mathbf{Y}_{M}\right]=\frac{M\mu^{2}+\sigma^{2}-M\mu^{2}}{M}=\frac{\sigma^{2}}{M}. $

(b) Now assume that the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n} $ are identically distributed with with mean $ \mu $ and variance $ \sigma^{2} $ , but they are only correlated rather than independent. Find the variance of $ \mathbf{Y}_{M} $ .

Again, $ Var\left[\mathbf{Y}_{M}\right]=\frac{\sigma^{2}}{M} $ , because only uncorrelatedness was used in part (a).


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood