Line 1: Line 1:
 
=Example. Addition of two jointly distributed Gaussian random variables=
 
=Example. Addition of two jointly distributed Gaussian random variables=
  
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be two jointly distributed Gaussian random variables. Assume <math>\mathbf{X}</math>  has mean <math>\mu_{\mathbf{X}}</math>  and variance <math>\sigma_{\mathbf{X}}^{2} , \mathbf{Y}</math>  has mean <math>\mu_{\mathbf{Y}}</math>  and variance <math>\sigma_{\mathbf{Y}}^{2}</math> , and that the correlation coefficient between <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  is <math>r</math> . Define a new random variable <math>\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> .
+
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two jointly distributed Gaussian random variables. Assume <math class="inline">\mathbf{X}</math>  has mean <math class="inline">\mu_{\mathbf{X}}</math>  and variance <math class="inline">\sigma_{\mathbf{X}}^{2} , \mathbf{Y}</math>  has mean <math class="inline">\mu_{\mathbf{Y}}</math>  and variance <math class="inline">\sigma_{\mathbf{Y}}^{2}</math> , and that the correlation coefficient between <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  is <math class="inline">r</math> . Define a new random variable <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> .
  
 
(a)
 
(a)
  
Show that <math>\mathbf{Z}</math>  is a Gaussian random variable.
+
Show that <math class="inline">\mathbf{Z}</math>  is a Gaussian random variable.
  
If <math>\mathbf{Z}</math>  is a Guassian random variable, then it has a characteristic function of the form
+
If <math class="inline">\mathbf{Z}</math>  is a Guassian random variable, then it has a characteristic function of the form
  
<math>\Phi_{\mathbf{Z}}\left(\omega\right)=e^{i\mu_{\mathbf{Z}}\omega}e^{-\frac{1}{2}\sigma_{\mathbf{Z}}^{2}\omega^{2}}.</math>  
+
<math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=e^{i\mu_{\mathbf{Z}}\omega}e^{-\frac{1}{2}\sigma_{\mathbf{Z}}^{2}\omega^{2}}.</math>  
  
<math>\Phi_{\mathbf{Z}}\left(\omega\right)</math>  
+
<math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)</math>  
  
where <math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)</math>  is the joint characteristic function of <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math> , defined as
+
where <math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)</math>  is the joint characteristic function of <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math> , defined as
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\mathbf{\omega_{1}X}+\omega_{2}\mathbf{Y}\right)}\right].</math>  
+
<math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\mathbf{\omega_{1}X}+\omega_{2}\mathbf{Y}\right)}\right].</math>  
  
Now because <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are jointly Gaussian with the given parameters, we know that
+
Now because <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are jointly Gaussian with the given parameters, we know that
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\mu_{X}\omega_{1}+\mu_{Y}\omega_{2}\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega_{1}^{2}+2r\sigma_{X}\sigma_{Y}\omega_{1}\omega_{2}+\sigma_{Y}^{2}\omega_{2}^{2}\right)}.</math>  
+
<math class="inline">\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\mu_{X}\omega_{1}+\mu_{Y}\omega_{2}\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega_{1}^{2}+2r\sigma_{X}\sigma_{Y}\omega_{1}\omega_{2}+\sigma_{Y}^{2}\omega_{2}^{2}\right)}.</math>  
  
 
Thus,
 
Thus,
  
<math>\Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\mu_{X}\omega+\mu_{Y}\omega\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega^{2}+2r\sigma_{X}\sigma_{Y}\omega^{2}+\sigma_{Y}^{2}\omega^{2}\right)}</math><math>=e^{i\left(\mu_{X}+\mu_{Y}\right)\omega}e^{-\frac{1}{2}\left(\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}\right)\omega^{2}}=e^{i\mu_{Z}\omega}e^{-\frac{1}{2}\sigma_{Z}^{2}\omega^{2}}</math>  
+
<math class="inline">\Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\mu_{X}\omega+\mu_{Y}\omega\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega^{2}+2r\sigma_{X}\sigma_{Y}\omega^{2}+\sigma_{Y}^{2}\omega^{2}\right)}</math><math class="inline">=e^{i\left(\mu_{X}+\mu_{Y}\right)\omega}e^{-\frac{1}{2}\left(\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}\right)\omega^{2}}=e^{i\mu_{Z}\omega}e^{-\frac{1}{2}\sigma_{Z}^{2}\omega^{2}}</math>  
  
where <math>\mu_{Z}=\mu_{X}+\mu_{Y}</math>  and <math>\sigma_{Z}^{2}=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}</math> .
+
where <math class="inline">\mu_{Z}=\mu_{X}+\mu_{Y}</math>  and <math class="inline">\sigma_{Z}^{2}=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}</math> .
  
<math>\mathbf{Z}</math>  is a Gaussian random variable with <math>E\left[\mathbf{Z}\right]=\mu_{X}+\mu_{Y}  and Var\left[\mathbf{Z}\right]=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}</math> .
+
<math class="inline">\mathbf{Z}</math>  is a Gaussian random variable with <math class="inline">E\left[\mathbf{Z}\right]=\mu_{X}+\mu_{Y}  and Var\left[\mathbf{Z}\right]=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}</math> .
  
 
(b)  
 
(b)  
  
Find the variance of <math>\mathbf{Z}</math> .
+
Find the variance of <math class="inline">\mathbf{Z}</math> .
  
As show in part (a) <math>Var\left[\mathbf{Z}\right]=\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}</math> .
+
As show in part (a) <math class="inline">Var\left[\mathbf{Z}\right]=\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2}</math> .
  
 
----
 
----

Latest revision as of 12:00, 30 November 2010

Example. Addition of two jointly distributed Gaussian random variables

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly distributed Gaussian random variables. Assume $ \mathbf{X} $ has mean $ \mu_{\mathbf{X}} $ and variance $ \sigma_{\mathbf{X}}^{2} , \mathbf{Y} $ has mean $ \mu_{\mathbf{Y}} $ and variance $ \sigma_{\mathbf{Y}}^{2} $ , and that the correlation coefficient between $ \mathbf{X} $ and $ \mathbf{Y} $ is $ r $ . Define a new random variable $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ .

(a)

Show that $ \mathbf{Z} $ is a Gaussian random variable.

If $ \mathbf{Z} $ is a Guassian random variable, then it has a characteristic function of the form

$ \Phi_{\mathbf{Z}}\left(\omega\right)=e^{i\mu_{\mathbf{Z}}\omega}e^{-\frac{1}{2}\sigma_{\mathbf{Z}}^{2}\omega^{2}}. $

$ \Phi_{\mathbf{Z}}\left(\omega\right) $

where $ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right) $ is the joint characteristic function of $ \mathbf{X} $ and $ \mathbf{Y} $ , defined as

$ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=E\left[e^{i\left(\mathbf{\omega_{1}X}+\omega_{2}\mathbf{Y}\right)}\right]. $

Now because $ \mathbf{X} $ and $ \mathbf{Y} $ are jointly Gaussian with the given parameters, we know that

$ \Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=e^{i\left(\mu_{X}\omega_{1}+\mu_{Y}\omega_{2}\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega_{1}^{2}+2r\sigma_{X}\sigma_{Y}\omega_{1}\omega_{2}+\sigma_{Y}^{2}\omega_{2}^{2}\right)}. $

Thus,

$ \Phi_{\mathbf{Z}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,\omega\right)=e^{i\left(\mu_{X}\omega+\mu_{Y}\omega\right)}e^{-\frac{1}{2}\left(\sigma_{X}^{2}\omega^{2}+2r\sigma_{X}\sigma_{Y}\omega^{2}+\sigma_{Y}^{2}\omega^{2}\right)} $$ =e^{i\left(\mu_{X}+\mu_{Y}\right)\omega}e^{-\frac{1}{2}\left(\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2}\right)\omega^{2}}=e^{i\mu_{Z}\omega}e^{-\frac{1}{2}\sigma_{Z}^{2}\omega^{2}} $

where $ \mu_{Z}=\mu_{X}+\mu_{Y} $ and $ \sigma_{Z}^{2}=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2} $ .

$ \mathbf{Z} $ is a Gaussian random variable with $ E\left[\mathbf{Z}\right]=\mu_{X}+\mu_{Y} and Var\left[\mathbf{Z}\right]=\sigma_{X}^{2}+2r\sigma_{X}\sigma_{Y}+\sigma_{Y}^{2} $ .

(b)

Find the variance of $ \mathbf{Z} $ .

As show in part (a) $ Var\left[\mathbf{Z}\right]=\sigma_{\mathbf{X}}^{2}+2r\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}+\sigma_{\mathbf{Y}}^{2} $ .


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison