Line 1: Line 1:
 
=Example. Addition of two independent Poisson random variables=
 
=Example. Addition of two independent Poisson random variables=
  
Let <math>\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math>  where <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are independent Poisson random variables with means <math>\lambda</math>  and <math>\mu</math> , respectively.  
+
Let <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math>  where <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are independent Poisson random variables with means <math class="inline">\lambda</math>  and <math class="inline">\mu</math> , respectively.  
  
 
(a)
 
(a)
  
Find the pmf of <math>\mathbf{Z}</math> .
+
Find the pmf of <math class="inline">\mathbf{Z}</math> .
  
 
According to the characteristic function of Poisson random variable
 
According to the characteristic function of Poisson random variable
  
<math>\Phi_{\mathbf{X}}(\omega)=e^{-\lambda\left(1-e^{i\omega}\right)},\Phi_{\mathbf{Y}}(\omega)=e^{-\mu\left(1-e^{i\omega}\right)}</math>.  
+
<math class="inline">\Phi_{\mathbf{X}}(\omega)=e^{-\lambda\left(1-e^{i\omega}\right)},\Phi_{\mathbf{Y}}(\omega)=e^{-\mu\left(1-e^{i\omega}\right)}</math>.  
  
<math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  are independent <math>\Longrightarrow  \mathbf{X}</math>  and <math>\mathbf{Y}</math>  are uncorrelated <math>\Longrightarrow  e^{i\omega\mathbf{X}}</math>  and <math>e^{i\omega\mathbf{Y}}</math>  are uncorrelated.
+
<math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are independent <math class="inline">\Longrightarrow  \mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  are uncorrelated <math class="inline">\Longrightarrow  e^{i\omega\mathbf{X}}</math>  and <math class="inline">e^{i\omega\mathbf{Y}}</math>  are uncorrelated.
  
<math>\Phi_{\mathbf{Z}}(\omega)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\left(\mathbf{X}+\mathbf{Y}\right)}\right]=E\left[e^{i\omega\mathbf{X}}e^{i\omega\mathbf{Y}}\right]=E\left[e^{i\omega\mathbf{X}}\right]\cdot E\left[e^{i\omega\mathbf{Y}}\right]</math><math>=e^{-\lambda\left(1-e^{i\omega}\right)}\cdot e^{-\mu\left(1-e^{i\omega}\right)}=e^{-\left(\lambda+\mu\right)\left(1-e^{i\omega}\right).}</math>  
+
<math class="inline">\Phi_{\mathbf{Z}}(\omega)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\left(\mathbf{X}+\mathbf{Y}\right)}\right]=E\left[e^{i\omega\mathbf{X}}e^{i\omega\mathbf{Y}}\right]=E\left[e^{i\omega\mathbf{X}}\right]\cdot E\left[e^{i\omega\mathbf{Y}}\right]</math><math class="inline">=e^{-\lambda\left(1-e^{i\omega}\right)}\cdot e^{-\mu\left(1-e^{i\omega}\right)}=e^{-\left(\lambda+\mu\right)\left(1-e^{i\omega}\right).}</math>  
  
Now, we know that \mathbf{Z}  is a Poisson random variable with mean <math>\lambda+\mu</math> .
+
Now, we know that \mathbf{Z}  is a Poisson random variable with mean <math class="inline">\lambda+\mu</math> .
  
<math>\therefore p_{\mathbf{Z}}(k)=\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{k}}{k!}.</math>  
+
<math class="inline">\therefore p_{\mathbf{Z}}(k)=\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{k}}{k!}.</math>  
  
 
(b)
 
(b)
  
Show that the conditional pmf of <math>\mathbf{X}</math>  conditioned on the event <math>\left\{ \mathbf{Z}=n\right\}</math>  is binomially distributed, and determine the parameters of binomial distribution (<math>n</math>  and <math>p</math> ).
+
Show that the conditional pmf of <math class="inline">\mathbf{X}</math>  conditioned on the event <math class="inline">\left\{ \mathbf{Z}=n\right\}</math>  is binomially distributed, and determine the parameters of binomial distribution (<math class="inline">n</math>  and <math class="inline">p</math> ).
  
<math>P_{\mathbf{X}}\left(\mathbf{X}|\left\{ \mathbf{Z}=n\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} |\left\{ \mathbf{Z}=n\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Z}=n\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=n-k\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)}</math><math>=\frac{\frac{e^{-\lambda}\lambda^{k}}{k!}\cdot\frac{e^{-\mu}\mu^{n-k}}{\left(n-k\right)!}}{\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{n}}{n!}}=\left(\frac{n!}{k!\left(n-k\right)!}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}</math><math>=\left(\begin{array}{c}
+
<math class="inline">P_{\mathbf{X}}\left(\mathbf{X}|\left\{ \mathbf{Z}=n\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} |\left\{ \mathbf{Z}=n\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Z}=n\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=n-k\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)}</math><math class="inline">=\frac{\frac{e^{-\lambda}\lambda^{k}}{k!}\cdot\frac{e^{-\mu}\mu^{n-k}}{\left(n-k\right)!}}{\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{n}}{n!}}=\left(\frac{n!}{k!\left(n-k\right)!}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}</math><math class="inline">=\left(\begin{array}{c}
 
n\\
 
n\\
 
k
 
k
 
\end{array}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}\;,\; k=0,\,1,\,2,\,\cdots</math>  
 
\end{array}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}\;,\; k=0,\,1,\,2,\,\cdots</math>  
  
This is a binomial pmf <math>b(n,p)</math>  with parameters <math>n</math>  and <math>p=\frac{\lambda}{\lambda+\mu}</math> .
+
This is a binomial pmf <math class="inline">b(n,p)</math>  with parameters <math class="inline">n</math>  and <math class="inline">p=\frac{\lambda}{\lambda+\mu}</math> .
  
 
----
 
----

Latest revision as of 11:58, 30 November 2010

Example. Addition of two independent Poisson random variables

Let $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ where $ \mathbf{X} $ and $ \mathbf{Y} $ are independent Poisson random variables with means $ \lambda $ and $ \mu $ , respectively.

(a)

Find the pmf of $ \mathbf{Z} $ .

According to the characteristic function of Poisson random variable

$ \Phi_{\mathbf{X}}(\omega)=e^{-\lambda\left(1-e^{i\omega}\right)},\Phi_{\mathbf{Y}}(\omega)=e^{-\mu\left(1-e^{i\omega}\right)} $.

$ \mathbf{X} $ and $ \mathbf{Y} $ are independent $ \Longrightarrow \mathbf{X} $ and $ \mathbf{Y} $ are uncorrelated $ \Longrightarrow e^{i\omega\mathbf{X}} $ and $ e^{i\omega\mathbf{Y}} $ are uncorrelated.

$ \Phi_{\mathbf{Z}}(\omega)=E\left[e^{i\omega\mathbf{Z}}\right]=E\left[e^{i\omega\left(\mathbf{X}+\mathbf{Y}\right)}\right]=E\left[e^{i\omega\mathbf{X}}e^{i\omega\mathbf{Y}}\right]=E\left[e^{i\omega\mathbf{X}}\right]\cdot E\left[e^{i\omega\mathbf{Y}}\right] $$ =e^{-\lambda\left(1-e^{i\omega}\right)}\cdot e^{-\mu\left(1-e^{i\omega}\right)}=e^{-\left(\lambda+\mu\right)\left(1-e^{i\omega}\right).} $

Now, we know that \mathbf{Z} is a Poisson random variable with mean $ \lambda+\mu $ .

$ \therefore p_{\mathbf{Z}}(k)=\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{k}}{k!}. $

(b)

Show that the conditional pmf of $ \mathbf{X} $ conditioned on the event $ \left\{ \mathbf{Z}=n\right\} $ is binomially distributed, and determine the parameters of binomial distribution ($ n $ and $ p $ ).

$ P_{\mathbf{X}}\left(\mathbf{X}|\left\{ \mathbf{Z}=n\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} |\left\{ \mathbf{Z}=n\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Z}=n\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=n-k\right\} \right)}{P\left(\left\{ \mathbf{Z}=n\right\} \right)} $$ =\frac{\frac{e^{-\lambda}\lambda^{k}}{k!}\cdot\frac{e^{-\mu}\mu^{n-k}}{\left(n-k\right)!}}{\frac{e^{-\left(\lambda+\mu\right)}\left(\lambda+\mu\right)^{n}}{n!}}=\left(\frac{n!}{k!\left(n-k\right)!}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k} $$ =\left(\begin{array}{c} n\\ k \end{array}\right)\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}\;,\; k=0,\,1,\,2,\,\cdots $

This is a binomial pmf $ b(n,p) $ with parameters $ n $ and $ p=\frac{\lambda}{\lambda+\mu} $ .


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison