Line 1: Line 1:
 
=Example. A sum of a random number of i.i.d.  Gaussians=
 
=Example. A sum of a random number of i.i.d.  Gaussians=
  
Let <math>\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of i.i.d.  Gaussian random variables, each having characteristic function
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  be a sequence of i.i.d.  Gaussian random variables, each having characteristic function
  
<math>\Phi_{\mathbf{X}}\left(\omega\right)=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}</math>. Let <math>\mathbf{N}</math>  be a Poisson random variable with pmf
+
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}</math>. Let <math class="inline">\mathbf{N}</math>  be a Poisson random variable with pmf
  
<math>p(n)=\frac{e^{-\lambda}\lambda^{n}}{n!},\; n=0,1,2,\cdots,\;\lambda>0,</math> and assume <math>\mathbf{N}</math>  is statistically independent of <math>\left\{ \mathbf{X}_{n}\right\}</math>  . Define a new random variable
+
<math class="inline">p(n)=\frac{e^{-\lambda}\lambda^{n}}{n!},\; n=0,1,2,\cdots,\;\lambda>0,</math> and assume <math class="inline">\mathbf{N}</math>  is statistically independent of <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  . Define a new random variable
  
<math>\mathbf{Y}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{N}.</math>  
+
<math class="inline">\mathbf{Y}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{N}.</math>  
  
 
Note
 
Note
  
If <math>\mathbf{N}=0</math> , then <math>\mathbf{Y}=0</math> .
+
If <math class="inline">\mathbf{N}=0</math> , then <math class="inline">\mathbf{Y}=0</math> .
  
(a) Find the mean of <math>\mathbf{Y}</math> .
+
(a) Find the mean of <math class="inline">\mathbf{Y}</math> .
  
• Probability generating function of <math>\mathbf{N}</math>  is <math>P_{\mathbf{N}}\left(z\right)=E\left[z^{\mathbf{N}}\right]=\sum_{n=0}^{\infty}z^{n}\frac{e^{-\lambda}\lambda^{n}}{n!}=e^{-\lambda}\sum_{n=0}^{\infty}\frac{\left(z\lambda\right)^{n}}{n!}=e^{-\lambda}e^{z\lambda}=e^{-\lambda\left(1-z\right)}.</math>  
+
• Probability generating function of <math class="inline">\mathbf{N}</math>  is <math class="inline">P_{\mathbf{N}}\left(z\right)=E\left[z^{\mathbf{N}}\right]=\sum_{n=0}^{\infty}z^{n}\frac{e^{-\lambda}\lambda^{n}}{n!}=e^{-\lambda}\sum_{n=0}^{\infty}\frac{\left(z\lambda\right)^{n}}{n!}=e^{-\lambda}e^{z\lambda}=e^{-\lambda\left(1-z\right)}.</math>  
  
• The characteristic function of <math>\mathbf{Y}</math>  is <math>\Phi_{\mathbf{Y}}\left(\omega\right)=P_{\mathbf{N}}\left(z\right)\Bigl|_{z=\Phi_{\mathbf{X}}\left(\omega\right)}=e^{-\lambda\left(1-z\right)}\Bigl|_{z=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}}=e^{-\lambda\left(1-e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}\right)}.</math>  
+
• The characteristic function of <math class="inline">\mathbf{Y}</math>  is <math class="inline">\Phi_{\mathbf{Y}}\left(\omega\right)=P_{\mathbf{N}}\left(z\right)\Bigl|_{z=\Phi_{\mathbf{X}}\left(\omega\right)}=e^{-\lambda\left(1-z\right)}\Bigl|_{z=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}}=e^{-\lambda\left(1-e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}\right)}.</math>  
  
• Now, we can get the mean of <math>\mathbf{Y}</math>  using the characteristic function. <math>E\left[\mathbf{Y}\right]=\frac{d}{d\left(i\omega\right)}\Phi_{\mathbf{Y}}\left(\omega\right)\Bigl|_{i\omega=0}=e^{-\lambda}\cdot\frac{d}{d\left(i\omega\right)}e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\Bigl|_{i\omega=0}</math><math>=e^{-\lambda}\cdot e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\cdot\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}\cdot\left(\mu+\sigma^{2}\left(i\omega\right)\right)\Bigl|_{i\omega=0}</math><math>=e^{-\lambda}\cdot\lambda\cdot\mu=\lambda\mu e^{-\lambda}.</math>
+
• Now, we can get the mean of <math class="inline">\mathbf{Y}</math>  using the characteristic function. <math class="inline">E\left[\mathbf{Y}\right]=\frac{d}{d\left(i\omega\right)}\Phi_{\mathbf{Y}}\left(\omega\right)\Bigl|_{i\omega=0}=e^{-\lambda}\cdot\frac{d}{d\left(i\omega\right)}e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\Bigl|_{i\omega=0}</math><math class="inline">=e^{-\lambda}\cdot e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\cdot\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}\cdot\left(\mu+\sigma^{2}\left(i\omega\right)\right)\Bigl|_{i\omega=0}</math><math class="inline">=e^{-\lambda}\cdot\lambda\cdot\mu=\lambda\mu e^{-\lambda}.</math>
  
 
----
 
----

Latest revision as of 07:15, 1 December 2010

Example. A sum of a random number of i.i.d. Gaussians

Let $ \left\{ \mathbf{X}_{n}\right\} $ be a sequence of i.i.d. Gaussian random variables, each having characteristic function

$ \Phi_{\mathbf{X}}\left(\omega\right)=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}} $. Let $ \mathbf{N} $ be a Poisson random variable with pmf

$ p(n)=\frac{e^{-\lambda}\lambda^{n}}{n!},\; n=0,1,2,\cdots,\;\lambda>0, $ and assume $ \mathbf{N} $ is statistically independent of $ \left\{ \mathbf{X}_{n}\right\} $ . Define a new random variable

$ \mathbf{Y}=\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{N}. $

Note

If $ \mathbf{N}=0 $ , then $ \mathbf{Y}=0 $ .

(a) Find the mean of $ \mathbf{Y} $ .

• Probability generating function of $ \mathbf{N} $ is $ P_{\mathbf{N}}\left(z\right)=E\left[z^{\mathbf{N}}\right]=\sum_{n=0}^{\infty}z^{n}\frac{e^{-\lambda}\lambda^{n}}{n!}=e^{-\lambda}\sum_{n=0}^{\infty}\frac{\left(z\lambda\right)^{n}}{n!}=e^{-\lambda}e^{z\lambda}=e^{-\lambda\left(1-z\right)}. $

• The characteristic function of $ \mathbf{Y} $ is $ \Phi_{\mathbf{Y}}\left(\omega\right)=P_{\mathbf{N}}\left(z\right)\Bigl|_{z=\Phi_{\mathbf{X}}\left(\omega\right)}=e^{-\lambda\left(1-z\right)}\Bigl|_{z=e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}}=e^{-\lambda\left(1-e^{i\mu\omega}e^{-\frac{1}{2}\sigma^{2}\omega^{2}}\right)}. $

• Now, we can get the mean of $ \mathbf{Y} $ using the characteristic function. $ E\left[\mathbf{Y}\right]=\frac{d}{d\left(i\omega\right)}\Phi_{\mathbf{Y}}\left(\omega\right)\Bigl|_{i\omega=0}=e^{-\lambda}\cdot\frac{d}{d\left(i\omega\right)}e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\Bigl|_{i\omega=0} $$ =e^{-\lambda}\cdot e^{\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}}\cdot\lambda e^{\mu\left(i\omega\right)+\frac{1}{2}\sigma^{2}\left(i\omega\right)^{2}}\cdot\left(\mu+\sigma^{2}\left(i\omega\right)\right)\Bigl|_{i\omega=0} $$ =e^{-\lambda}\cdot\lambda\cdot\mu=\lambda\mu e^{-\lambda}. $


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang