Line 9: Line 9:
 
*<math>X(s)</math>: The Laplace Transform of <math>x(t)</math>.
 
*<math>X(s)</math>: The Laplace Transform of <math>x(t)</math>.
 
The above symbols are brought to you with thanks to Brian Thomas
 
The above symbols are brought to you with thanks to Brian Thomas
 +
 +
<h3>Signal Metrics</h3>
 +
<br/>
 +
<ul style="list-style:none;">
 +
  <li><strong>Signal Energy</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt</math> for ct (continuous time)</p>
 +
        <p><math>E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2</math> for dt (discrete time)</p>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal Power</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt</math> for ct (continuous time)</p>
 +
        <p><math>P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2</math> for dt (discrete time)</p>
 +
        <p>note: for periodic signals <br/>
 +
        <math>P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2</math>
 +
        </p>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal RMS (root-mean-square)</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
      <math>X_{rms} = \sqrt{P_x}</math>
 +
      </li>
 +
    </ul>
 +
  </li>
 +
  <li><strong>Signal Magnitude</strong>
 +
    <ul style="list-style:none;">
 +
      <li>
 +
        <p><math>m_x = max|x(t)|</math>, for CT</p>
 +
        <p><math>m_x = max|x(n)|</math>, for DT</p>
 +
        <p> if <math>m_x < \infty</math>, we say signal is bounded</p>
 +
      </li>
 +
    </ul>
 +
  </li>

Revision as of 14:50, 27 January 2009

So many symbols, so little time... Here's a quick lookup table for our commonly-used symbols!

  • $ \omega_s $: Sampling frequency; equal to $ \frac{2\pi}{T} $
  • $ \omega_m $: Maximum frequency in a band-limited signal ($ = max(\{|w|\ :\ w \neq 0\}) $
  • $ \omega_c $: Cutoff frequency of a filter ($ \omega_c > 0 $). (For instance, lowpass filters are nonzero in the range $ \omega \in [-\omega_c, \omega_c] $.)
  • $ T $: Sampling period; equal to $ \frac{2\pi}{\omega_s} $
  • NR, or "Nyquest Rate": $ =2\omega_m $. If $ \omega_s > NR = 2\omega_m $, then the band-limited signal can be uniquely reconstructed from the sampled signal.
  • $ p(t) $: "Impulse train" -- equivalent to $ \sum_{n=-\infty}^{\infty} \delta(t-nT) $
  • $ s $: A complex number -- often expressed as a sum of it's parts, $ a+j\omega $, where $ a, \omega \in \mathbb{R} $
  • $ X(s) $: The Laplace Transform of $ x(t) $.

The above symbols are brought to you with thanks to Brian Thomas

Signal Metrics


  • Signal Energy
    • $ E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt $ for ct (continuous time)

      $ E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 $ for dt (discrete time)

  • Signal Power
    • $ P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt $ for ct (continuous time)

      $ P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2 $ for dt (discrete time)

      note: for periodic signals
      $ P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 $

  • Signal RMS (root-mean-square)
    • $ X_{rms} = \sqrt{P_x} $
  • Signal Magnitude
    • $ m_x = max|x(t)| $, for CT

      $ m_x = max|x(n)| $, for DT

      if $ m_x < \infty $, we say signal is bounded

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett