Revision as of 05:45, 23 September 2009 by Ssuresh (Talk | contribs)

LECTURE on September 11, 2009

The perfect reconstruction of $ {x(t)}\,\! $ from $ x_s(t)\,\! $ is possible if $ X(f) = 0\,\! $ when $ |f| \ge \frac{1}{|2T|} $

PROOF: Look at the graph of $ X_s(f)\,\! $

$ *** Image \quad goes \quad here***\,\! $

To avoid aliasing,

$ \frac{1}{T}\ - f_M \ge f_M $ $ \quad\iff\quad $ $ \frac{1}{T}\ \ge 2f_M $

To recover the signal, we will require a low pass filter with gain $ T\,\! $ and cutoff, $ \frac{1}{2T} $

Let $ x_r(t)\,\! $ be the reconstructed signal. Then,

$ X_(f) = H_r(f) X_s(f)\,\! $

where,

$ H_r(f) = T rect(f)\,\! $

So,

$ \begin{align} x_r(t) &= h_r(t) * X_s(t) \\ &= sinc \left (\frac{t}{T}\right) * \sum_k X(kT) \delta(t-kT) \\ &= \sum_k X(kT) sinc \left (\frac{t}{T}\right) * \delta(t-kT) \\ &= \sum_k X(kT) sinc \left (\frac{t - kT}{T}\right)\\ \end{align} $

Recall, $ \quad sinc(x) = 0 \quad \iff \quad x = \pm 1, \pm 2, \pm 3 ... \,\! $


$ *** Image \quad goes \quad here***\,\! $

At all integer multiples of T,

$ x_r(nT) = X(nT)\,\! $

If Nyquist is satisfied, $ \quad x_r(nT) = X(nT)\quad \forall \quad 't'\,\! $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn