Line 2: Line 2:
  
  
* <math>\sum_{k=1}^\infty ar^{k-1}=\frac{a}{1-r}</math> if <math>|r|<1</math>
+
* <math>\sum_{k=1}^\infty ar^{k-1}=\frac{a}{1-r}</math>
  
* <math>\sum_{k=1}^\infty kar^{k-1}=\frac{a}{(1-r)^2}</math> if <math>|r|<1</math>
+
* <math>\sum_{k=1}^\infty kar^{k-1}=\frac{a}{(1-r)^2}</math>
  
  
Line 10: Line 10:
  
  
* <math>\sum_{k=1}^K ar^{k-1}=\frac{a(1-r^K)}{1-r}</math> if <math>|r|<1</math>
+
* <math>\sum_{k=1}^K ar^{k-1}=\frac{a(1-r^K)}{1-r}</math>

Revision as of 07:10, 23 January 2009

Infinite geometric series formula assuming $ |r|<1 $

  • $ \sum_{k=1}^\infty ar^{k-1}=\frac{a}{1-r} $
  • $ \sum_{k=1}^\infty kar^{k-1}=\frac{a}{(1-r)^2} $


Finite sum of a geometric sequence (which does no require $ |r|<1 $)

  • $ \sum_{k=1}^K ar^{k-1}=\frac{a(1-r^K)}{1-r} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal