Revision as of 12:47, 17 December 2008 by Mcwalker (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Sometimes is is difficult to get answers to fit the solution key. Here is a place to post methods for changing seemingly natural answers into the solution key's answers...

Hw 4 Problem 22.a (b)

$ \frac{3}{(k \pi)^2} \left ( cos \left ( \frac{\pi}{3} k \right ) - cos \left ( \frac {2 \pi}{3} k \right ) \right ) $

$ \begin{align} &= \frac{3}{(k \pi)^2} \left ( \frac{1}{2}e^{jk \frac{\pi}{3}} + \frac{1}{2}e^{-jk \frac{\pi}{3}} - \frac{1}{2}e^{jk \frac{2 \pi}{3}} - \frac{1}{2}e^{-jk \frac{2 \pi}{3}} \right ) \cdot \frac{2}{2} \\ &= \frac{6}{(k \pi)^2} \left ( \frac{1}{4} e^{jk \frac{\pi}{3}} + \frac{1}{4} e^{-jk \frac{\pi}{3}} - \frac{1}{4} e^{jk \frac{2 \pi}{3}} - \frac{1}{4} e^{-jk \frac{2 \pi}{3}} \right ) \\ &= \frac{6}{(k \pi)^2} \left ( -\frac{1}{4} e^{jk \frac {2 \pi}{3}} + \frac{1}{4} e^{jk \frac{\pi}{3}} + \frac{1}{4} e^{-jk \frac{\pi}{3}} - \frac{1}{4} e^{-jk \frac{2 \pi}{3}} \right ) \\ &= \frac{6}{(k \pi)^2} \left ( -\frac{1}{4} e^{jk \frac{\pi}{2}} e^{jk \frac{\pi}{6}} + \frac{1}{4} e^{jk \frac{\pi}{2}} e^{-jk \frac{\pi}{6}} + \frac{1}{4} e^{-jk \frac{\pi}{2}} e^{jk \frac{\pi}{6}} - \frac{1}{4} e^{-jk \frac{\pi}{2}}e^{-jk \frac{\pi}{6]} \right ) \end{align} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch