(Removing all content from page)
Line 1: Line 1:
[[Category:ECE637]]
 
[[Category:sLecture]]
 
[[Category:image processing]]
 
[[Category:lecture notes]]
 
  
[[ECE637_Bouman_lectures_Image_Processing_sLecture_mhossain|sLecture]]
 
:↳ [[ECE637_tomographic_reconstruction_S13_mhossain|Topic 2: Tomographic Reconstruction]]
 
::↳ [[ECE637_tomographic_reconstruction_intro_S13_mhossain|Intro]]
 
::↳ [[ECE637_tomographic_reconstruction_CT_S13_mhossain|CT]]
 
::↳ [[ECE637_tomographic_reconstruction_PET_S13_mhossain|PET]]
 
::↳ [[ECE637_tomographic_reconstruction_coordinate_rotation_S13_mhossain|Co-ordinate Rotation]]
 
::↳ [[ECE637_tomographic_reconstruction_radon_transform_S13_mhossain|Radon Transform]]
 
::↳ [[ECE637_tomographic_reconstruction_fourier_slice_theorem_S13_mhossain|Fourier Slice Theorem]]
 
::↳ [[ECE637_tomographic_reconstruction_convolution_back_projection_S13_mhossain|Convolution Back Projection]]
 
----
 
 
 
<center><font size= 4>
 
'''[[ECE637_Bouman_lectures_Image_Processing_sLecture_mhossain|The Bouman Lectures on Image Processing]]'''
 
</font size>
 
 
A sLecture by [[user:Mhossain | Maliha Hossain]]
 
 
<font size= 3> Subtopic 3: Convolution Back Projection </font size>
 
 
© 2013
 
</center>
 
 
 
----
 
 
 
= Excerpt from Prof. Bouman's Lecture =
 
 
 
 
----
 
 
=Accompanying Lecture Notes=
 
 
----
 
 
introduction
 
Convolution back projection (CBP) or forward back projection.
 
do not need any calculation in frequency domain so it is faster
 
 
definition?
 
 
 
Summary of CBP algorithm
 
# Measure projections <math>p_{\theta}(r)</math>.
 
# Filter the projections to obtain <math>g_{\theta}(r) = h(r)*p_{\theta}(r)</math>.
 
# Back project filtered projections <br/>
 
<math>f(x,y) = \int_0^{\pi}g_{\theta}(x\cos(\theta)+x\sin(\theta))d\theta</math>
 
 
find images like the copyrighted one using impulse?
 
 
In order to compute the inverse CSFT of <math>F(u,v)</math> in polar coordinates, we must use the Jacobian of the polar coordinate transformation.<br/>
 
<math>du dv = |\rho|d\theta d\rho</math>
 
where <math>u = \rho\cos(\theta)</math> and <math>v = \rho\sin(\theta)</math>
 
 
This results in the expression <br/>
 
<math>f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(u,v)e^{2\pi j(xu+yv)}dudv</math>
 
 
Using the Fourier slice theorem, we can replace F(x,y) with its representation in polar coordinates, <math>P_{\theta}(\rho)</math><br/>
 
<math>\begin{align}
 
\Rightarrow f(x,y) &= \int_{-\infty}^{\infty}\int_0^{\pi}P_{\theta}(r)e^{2\pi j(x\rho\cos(\theta) +y\rho\sin(\theta))}dudv \\
 
&= \int_0^{\pi}\underbrace{[\int_{-\infty}^{\infty}|\rho|P_{\theta}e^{2\pi j\rho(x\cos(\theta) +y\sin(\theta))}d\rho]}_{g_{\theta}(x\cos(\theta) + y\sin(\theta))}d\theta
 
\end{align}</math>
 
 
Then <math>g_{\theta}(t)</math> is given by<br/>
 
<math>\begin{align}
 
g_{\theta}(t) &= \int_{\infty}^{\infty}|\rho|P_{\theta}(\rho)e^{2\pi j\rho t}d\rho \\
 
&= CTFT^{-1}\{|\rho|P_{\theta}(\rho)\} \\
 
&= h(t) * p_{\theta}(r)
 
\end{align}</math>
 
 
where <math>h(t) = CTFT^{-1}\{|\rho|\}</math>, and <br/>
 
<math>f(x,y) = \int_0^{\pi}g_{\theta}(x\cos(\theta) + y\sin(\theta))d\theta</math>
 
 
 
==A closer look at Projection Filter==
 
1. At each angle, projections are filtered.<br/>
 
<math>g_{\theta}(r) = h(r)*p_{\theta}(r) \ </math>.
 
2. the frequency response of the filter is given by <br/>
 
<math>H(\rho) = |\rho|</math></br>
 
it's like a high pass filter.
 
3. But the real filters must be bandlimited to <math>|\rho|</math> ≤ <math>f_c</math> for some cutoff frequency <math>f_c</math>.
 
 
Fig 1: Frequency response of <math>H(\rho) = |\rho|</math>
 
 
So<br/>
 
<math>\begin{align}
 
H(\rho) &= f_c[rect(f/(2f_c))-\wedge(f/f_c)] \\
 
h(r) &= f_c^2[2sinc(t2f_c)-sinc^2(tf_c)]
 
\end{align}</math>
 
 
 
Back projection function is <br/>
 
<math>f(x,y) = \int_0^{\pi}b_{\theta}(x,y)d\theta</math>
 
 
where <br/>
 
<math> b_{\theta}(x,y) = g_{\theta}(x\cos(\theta)+y\sin(\theta))</math>
 
 
Consider the set of points <math>(x,y)</math> such that <br/>
 
<math>r = x\cos(\theta)+y\sin(\theta)</math>
 
 
This set looks like
 
 
Fig 2: Graphical representation of the set <math>\{(x,y):r=x\cos(\theta)+y\sin(\theta)\}</math>
 
 
 
Along this line, <math>b_{\theta}(x,y) = g_{\theta}(r)</math>.
 
 
For each angle <math>\theta</math> back projection is constant along the lines of angle <math>\theta</math> and take on value <math>g_{\theta}(r)</math>.
 
 
Fig 3: Geometric interpretation
 
 
 
Complete back projection is formed by integrating (summing) back projections for angles ranging from <math>0</math> to <math>\pi</math>.<br/>
 
<math>\begin{align}
 
f(x,y) &= \int_0^{\pi}b_{\theta}(x,y)d\theta \\
 
&\approx \frac{\pi}{M} \sum_{m=0}^{M-1} b_{\frac{m\pi}{M}}(x,y)
 
\end{align}</math>
 
 
Back projection "smears" values of <math>g(r)</math> back over the image, and then adds smeared images for each angle.
 
 
 
[[Image:FST_fig1_mh.jpeg|400px|thumb|left|Fig 1: <math>P_{\theta}(\rho)</math> is <math>F(u,v)</math> in polar coordinates]]
 
 
 
 
----
 
 
== References ==
 
 
* C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.
 
 
 
----
 
 
==[[Talk:ECE637_tomographic_reconstruction_convolution_back_projection_S13_mhossain|Questions and comments]]==
 
 
If you have any questions, comments, etc. please post them on [[Talk:ECE637_tomographic_reconstruction_convolution_back_projection_S13_mhossain|this page]]
 
 
 
----
 
[[ECE637_Bouman_lectures_Image_Processing_sLecture_mhossain|Back to the "Bouman Lectures on Image Processing" by Maliha Hossain]]
 

Revision as of 16:25, 1 June 2013

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood