Line 3: Line 3:
 
'''1. (25 Points)'''
 
'''1. (25 Points)'''
  
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be two independent identically distributed random variables taking on values in <math>\mathbf{N}</math>  (the natural numbers) with <math>P\left(\left\{ \mathbf{X}=i\right\} \right)=P\left(\left\{ \mathbf{Y}=i\right\} \right)=\frac{1}{2^{i}}\;,\qquad i=1,2,3,\cdots.</math>  
+
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two independent identically distributed random variables taking on values in <math class="inline">\mathbf{N}</math>  (the natural numbers) with <math class="inline">P\left(\left\{ \mathbf{X}=i\right\} \right)=P\left(\left\{ \mathbf{Y}=i\right\} \right)=\frac{1}{2^{i}}\;,\qquad i=1,2,3,\cdots.</math>  
  
 
'''(a)'''
 
'''(a)'''
  
Find <math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)</math> , for <math>k\in\mathbf{N}</math> .
+
Find <math class="inline">P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)</math> , for <math class="inline">k\in\mathbf{N}</math> .
  
 
'''Note'''
 
'''Note'''
  
This problem is different from <math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)>k\right\} \right)</math> .
+
This problem is different from <math class="inline">P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)>k\right\} \right)</math> .
  
<math>P\left(\left\{ \mathbf{Y}>k\right\} \right)=1-P\left(\left\{ \mathbf{Y}\leq k\right\} \right)=1-\sum_{i=1}^{k}\frac{1}{2^{i}}=1-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}}=1-\left(1-\left(\frac{1}{2}\right)^{k}\right)=\left(\frac{1}{2}\right)^{k}.</math>  
+
<math class="inline">P\left(\left\{ \mathbf{Y}>k\right\} \right)=1-P\left(\left\{ \mathbf{Y}\leq k\right\} \right)=1-\sum_{i=1}^{k}\frac{1}{2^{i}}=1-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}}=1-\left(1-\left(\frac{1}{2}\right)^{k}\right)=\left(\frac{1}{2}\right)^{k}.</math>  
  
<math>P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}>k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)</math><math>=2\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math>=2\cdot\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}=3\cdot\left(\frac{1}{2}\right)^{2k}=\frac{3}{4^{k}}.</math>  
+
<math class="inline">P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}>k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)</math><math class="inline">=2\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math class="inline">=2\cdot\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}=3\cdot\left(\frac{1}{2}\right)^{2k}=\frac{3}{4^{k}}.</math>  
  
 
'''(b)'''
 
'''(b)'''
  
Find <math>P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)</math> .
+
Find <math class="inline">P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)</math> .
  
<math>P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math>=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math>  
+
<math class="inline">P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right)</math><math class="inline">=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math>  
  
 
'''(c)'''
 
'''(c)'''
  
Find <math>P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)</math> .
+
Find <math class="inline">P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)</math> .
  
<math>P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \cap\left\{ \mathbf{X}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \right)\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)</math><math>=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math>  
+
<math class="inline">P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \cap\left\{ \mathbf{X}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \right)\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)</math><math class="inline">=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}.</math>  
  
 
'''(d)'''
 
'''(d)'''
  
Find <math>P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)</math>  for a given natural number <math>k</math> .
+
Find <math class="inline">P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)</math>  for a given natural number <math class="inline">k</math> .
  
<math>P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \cap\left\{ \mathbf{X}=ki\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \right)\cdot P\left(\left\{ \mathbf{X}=ki\right\} \right)</math><math>=\sum_{i=1}^{\infty}\frac{1}{2^{i}}\cdot\frac{1}{2^{ki}}=\sum_{i=1}^{\infty}\left(\frac{1}{2^{k+1}}\right)^{i}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2^{k+1}}}=\frac{1}{2^{k+1}-1}.</math>  
+
<math class="inline">P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \cap\left\{ \mathbf{X}=ki\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \right)\cdot P\left(\left\{ \mathbf{X}=ki\right\} \right)</math><math class="inline">=\sum_{i=1}^{\infty}\frac{1}{2^{i}}\cdot\frac{1}{2^{ki}}=\sum_{i=1}^{\infty}\left(\frac{1}{2^{k+1}}\right)^{i}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2^{k+1}}}=\frac{1}{2^{k+1}-1}.</math>  
  
 
'''2. (25 Points)'''
 
'''2. (25 Points)'''
  
Let <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  be a sequence of binomially distributed random variables, with the <math>n</math> -th random variable <math>\mathbf{X}_{n}</math>  having pmf <math>p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
+
Let <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  be a sequence of binomially distributed random variables, with the <math class="inline">n</math> -th random variable <math class="inline">\mathbf{X}_{n}</math>  having pmf <math class="inline">p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c}
 
n\\
 
n\\
 
k
 
k
 
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math>  
 
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right).</math>  
  
Show that, if the <math>p_{n}</math>  have the property that <math>np_{n}\rightarrow\lambda</math>  as <math>n\rightarrow\infty</math> , where <math>\lambda</math>  is a positive constant, then the sequence <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  converges in distribution to a Poisson random variable <math>\mathbf{X}</math>  with mean <math>\lambda</math> .
+
Show that, if the <math class="inline">p_{n}</math>  have the property that <math class="inline">np_{n}\rightarrow\lambda</math>  as <math class="inline">n\rightarrow\infty</math> , where <math class="inline">\lambda</math>  is a positive constant, then the sequence <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  converges in distribution to a Poisson random variable <math class="inline">\mathbf{X}</math>  with mean <math class="inline">\lambda</math> .
  
 
'''Hint:'''
 
'''Hint:'''
Line 48: Line 48:
 
You may find the following fact useful:  
 
You may find the following fact useful:  
  
<math>\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
+
<math class="inline">\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}.</math>  
  
 
'''Answer'''
 
'''Answer'''
Line 56: Line 56:
 
'''3. (25 Points)'''
 
'''3. (25 Points)'''
  
Let <math>\mathbf{X}\left(t\right)</math>  be a real Gaussian random process with mean function <math>\mu\left(t\right)</math>  and autocovariance function <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
+
Let <math class="inline">\mathbf{X}\left(t\right)</math>  be a real Gaussian random process with mean function <math class="inline">\mu\left(t\right)</math>  and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
  
 
'''(a)'''
 
'''(a)'''
  
Write the expression for the <math>n</math> -th order characteristic function of <math>\mathbf{X}\left(t\right)</math>  in terms of <math>\mu\left(t\right)</math>  and <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
+
Write the expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math>  in terms of <math class="inline">\mu\left(t\right)</math>  and <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
  
 
ref.  
 
ref.  
  
There are the note about the [[ECE 600 General Concepts of Stochastic Processes Definitions|n-th order characteristic function of Gaussians random process]] . The only difference between the note and this problem is that this problem use the <math>\mu\left(t\right)</math>  rather than <math>\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> .
+
There are the note about the [[ECE 600 General Concepts of Stochastic Processes Definitions|n-th order characteristic function of Gaussians random process]] . The only difference between the note and this problem is that this problem use the <math class="inline">\mu\left(t\right)</math>  rather than <math class="inline">\eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right]</math> .
  
 
'''Solution'''
 
'''Solution'''
  
<math>\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> .  
+
<math class="inline">\Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\}</math> .  
  
 
'''(b)'''
 
'''(b)'''
  
Show that the probabilistic description of <math>\mathbf{X}\left(t\right)</math>  is completely characterized by <math>\mu\left(t\right)</math>  and autocovariance function <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
+
Show that the probabilistic description of <math class="inline">\mathbf{X}\left(t\right)</math>  is completely characterized by <math class="inline">\mu\left(t\right)</math>  and autocovariance function <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> .
  
 
'''Solution'''
 
'''Solution'''
  
From (a), the characteristic function of <math>\mathbf{X}\left(t\right)</math>  is specified completely in terms of <math>\mu_{\mathbf{X}}\left(t\right)</math>  and <math>C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . Thus, probabilistic description of <math>\mathbf{X}\left(t\right)</math>  is completely characterized by the characteristic function.
+
From (a), the characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math>  is specified completely in terms of <math class="inline">\mu_{\mathbf{X}}\left(t\right)</math>  and <math class="inline">C_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> . Thus, probabilistic description of <math class="inline">\mathbf{X}\left(t\right)</math>  is completely characterized by the characteristic function.
  
 
'''Note'''  
 
'''Note'''  
  
<math>f_{\mathbf{X}}\left(x\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega x}\Phi_{\mathbf{X}}\left(\omega\right)d\omega.</math>  
+
<math class="inline">f_{\mathbf{X}}\left(x\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega x}\Phi_{\mathbf{X}}\left(\omega\right)d\omega.</math>  
  
 
'''(c)'''
 
'''(c)'''
  
Show that if <math>\mathbf{X}\left(t\right)</math>  is wide-sense stationary then it is also strict-sense stationary.
+
Show that if <math class="inline">\mathbf{X}\left(t\right)</math>  is wide-sense stationary then it is also strict-sense stationary.
  
 
'''Note'''
 
'''Note'''
Line 92: Line 92:
 
'''4. (25 Points)'''
 
'''4. (25 Points)'''
  
Let <math>\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots</math>  be a sequence of independent, identically distributed random variables, each having Cauchy pdf <math>f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}.</math> Find the pdf of <math>\mathbf{Y}_{n}</math> . Describe how the pdf of <math>\mathbf{Y}_{n}</math>  depends on <math>n</math> . Does the sequence <math>\mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots</math>  converge in distribution? If yes, what is the distribution of the random variable it converges to?
+
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots</math>  be a sequence of independent, identically distributed random variables, each having Cauchy pdf <math class="inline">f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}.</math> Find the pdf of <math class="inline">\mathbf{Y}_{n}</math> . Describe how the pdf of <math class="inline">\mathbf{Y}_{n}</math>  depends on <math class="inline">n</math> . Does the sequence <math class="inline">\mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots</math>  converge in distribution? If yes, what is the distribution of the random variable it converges to?
  
 
'''Note'''
 
'''Note'''
Line 102: Line 102:
 
According to the characteristic function of Cauchy distributed random variable,  
 
According to the characteristic function of Cauchy distributed random variable,  
  
<math>\Phi_{\mathbf{X}}\left(\omega\right)=e^{-\left|\omega\right|}.</math>  
+
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=e^{-\left|\omega\right|}.</math>  
  
<math>\Phi_{\mathbf{Y}_{n}}\left(\omega\right)=E\left[\exp\left\{ i\omega\mathbf{Y}_{n}\right\} \right]=E\left[\exp\left\{ i\frac{\omega}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\right\} \right]=E\left[\prod_{k=1}^{n}\exp\left\{ i\frac{\omega}{n}\mathbf{X}_{k}\right\} \right]</math><math>=E\left[\exp\left\{ i\frac{\omega}{n}\mathbf{X}\right\} \right]^{n}=\Phi_{\mathbf{X}}\left(\frac{\omega}{n}\right)^{n}=\left[e^{-\left|\omega/n\right|}\right]^{n}=e^{-\left|\omega\right|}.</math>  
+
<math class="inline">\Phi_{\mathbf{Y}_{n}}\left(\omega\right)=E\left[\exp\left\{ i\omega\mathbf{Y}_{n}\right\} \right]=E\left[\exp\left\{ i\frac{\omega}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\right\} \right]=E\left[\prod_{k=1}^{n}\exp\left\{ i\frac{\omega}{n}\mathbf{X}_{k}\right\} \right]</math><math class="inline">=E\left[\exp\left\{ i\frac{\omega}{n}\mathbf{X}\right\} \right]^{n}=\Phi_{\mathbf{X}}\left(\frac{\omega}{n}\right)^{n}=\left[e^{-\left|\omega/n\right|}\right]^{n}=e^{-\left|\omega\right|}.</math>  
  
<math>f_{\mathbf{Y}_{n}}\left(\omega\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega y}e^{-\left|\omega\right|}d\omega=\frac{1}{2\pi}\left[\int_{-\infty}^{0}e^{-i\omega y}e^{\omega}d\omega+\int_{0}^{\infty}e^{-i\omega y}e^{-\omega}d\omega\right]</math><math>=\frac{1}{2\pi}\left[\int_{-\infty}^{C}e^{\omega\left(1-iy\right)}+\int_{C}^{\infty}e^{-\omega\left(1+iy\right)}d\omega\right]=\frac{1}{2\pi}\left[\frac{1}{1-iy}e^{\omega\left(1-iy\right)}\biggl|_{-\infty}^{C}+\frac{-1}{1+iy}e^{-\omega\left(1+iy\right)}\biggl|_{C}^{\infty}\right]</math><math>=\frac{1}{2\pi}\left[\frac{1}{1-iy}+\frac{1}{1+iy}\right]=\frac{1}{2\pi}\left[\frac{1+iy+1-iy}{1+y^{2}}\right]=\frac{1}{2\pi}\cdot\frac{2}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}.</math>  
+
<math class="inline">f_{\mathbf{Y}_{n}}\left(\omega\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega y}e^{-\left|\omega\right|}d\omega=\frac{1}{2\pi}\left[\int_{-\infty}^{0}e^{-i\omega y}e^{\omega}d\omega+\int_{0}^{\infty}e^{-i\omega y}e^{-\omega}d\omega\right]</math><math class="inline">=\frac{1}{2\pi}\left[\int_{-\infty}^{C}e^{\omega\left(1-iy\right)}+\int_{C}^{\infty}e^{-\omega\left(1+iy\right)}d\omega\right]=\frac{1}{2\pi}\left[\frac{1}{1-iy}e^{\omega\left(1-iy\right)}\biggl|_{-\infty}^{C}+\frac{-1}{1+iy}e^{-\omega\left(1+iy\right)}\biggl|_{C}^{\infty}\right]</math><math class="inline">=\frac{1}{2\pi}\left[\frac{1}{1-iy}+\frac{1}{1+iy}\right]=\frac{1}{2\pi}\left[\frac{1+iy+1-iy}{1+y^{2}}\right]=\frac{1}{2\pi}\cdot\frac{2}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}.</math>  
  
 
----
 
----

Revision as of 07:42, 1 December 2010

7.13 QE 2007 August

1. (25 Points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two independent identically distributed random variables taking on values in $ \mathbf{N} $ (the natural numbers) with $ P\left(\left\{ \mathbf{X}=i\right\} \right)=P\left(\left\{ \mathbf{Y}=i\right\} \right)=\frac{1}{2^{i}}\;,\qquad i=1,2,3,\cdots. $

(a)

Find $ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right) $ , for $ k\in\mathbf{N} $ .

Note

This problem is different from $ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)>k\right\} \right) $ .

$ P\left(\left\{ \mathbf{Y}>k\right\} \right)=1-P\left(\left\{ \mathbf{Y}\leq k\right\} \right)=1-\sum_{i=1}^{k}\frac{1}{2^{i}}=1-\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{k}\right)}{1-\frac{1}{2}}=1-\left(1-\left(\frac{1}{2}\right)^{k}\right)=\left(\frac{1}{2}\right)^{k}. $

$ P\left(\left\{ \min\left(\mathbf{X},\mathbf{Y}\right)=k\right\} \right)=P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}>k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right) $$ =2\cdot P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}>k\right\} \right)+P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right) $$ =2\cdot\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}+\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{k}=3\cdot\left(\frac{1}{2}\right)^{2k}=\frac{3}{4^{k}}. $

(b)

Find $ P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right) $ .

$ P\left(\left\{ \mathbf{X}=\mathbf{Y}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \cap\left\{ \mathbf{Y}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{X}=k\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=k\right\} \right) $$ =\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}. $

(c)

Find $ P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right) $ .

$ P\left(\left\{ \mathbf{Y}>\mathbf{X}\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \cap\left\{ \mathbf{X}=k\right\} \right)=\sum_{k=1}^{\infty}P\left(\left\{ \mathbf{Y}>k\right\} \right)\cdot P\left(\left\{ \mathbf{X}=k\right\} \right) $$ =\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}. $

(d)

Find $ P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right) $ for a given natural number $ k $ .

$ P\left(\left\{ \mathbf{Y}=k\mathbf{X}\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \cap\left\{ \mathbf{X}=ki\right\} \right)=\sum_{i=1}^{\infty}P\left(\left\{ \mathbf{Y}=i\right\} \right)\cdot P\left(\left\{ \mathbf{X}=ki\right\} \right) $$ =\sum_{i=1}^{\infty}\frac{1}{2^{i}}\cdot\frac{1}{2^{ki}}=\sum_{i=1}^{\infty}\left(\frac{1}{2^{k+1}}\right)^{i}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2^{k+1}}}=\frac{1}{2^{k+1}-1}. $

2. (25 Points)

Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $

Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .

Hint:

You may find the following fact useful:

$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $

Answer

Please see the example that is identical to this problem.

3. (25 Points)

Let $ \mathbf{X}\left(t\right) $ be a real Gaussian random process with mean function $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .

(a)

Write the expression for the $ n $ -th order characteristic function of $ \mathbf{X}\left(t\right) $ in terms of $ \mu\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .

ref.

There are the note about the n-th order characteristic function of Gaussians random process . The only difference between the note and this problem is that this problem use the $ \mu\left(t\right) $ rather than $ \eta_{\mathbf{X}}\left(t\right)=E\left[\mathbf{X}\left(t\right)\right] $ .

Solution

$ \Phi_{\mathbf{X}\left(t_{1}\right)\cdots\mathbf{X}\left(t_{n}\right)}\left(\omega_{1},\cdots,\omega_{n}\right)=\exp\left\{ i\sum_{k=1}^{n}\mu_{\mathbf{X}}\left(t_{k}\right)\omega_{k}-\frac{1}{2}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{\mathbf{XX}}\left(t_{j},t_{k}\right)\omega_{j}\omega_{k}\right\} $ .

(b)

Show that the probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by $ \mu\left(t\right) $ and autocovariance function $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ .

Solution

From (a), the characteristic function of $ \mathbf{X}\left(t\right) $ is specified completely in terms of $ \mu_{\mathbf{X}}\left(t\right) $ and $ C_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ . Thus, probabilistic description of $ \mathbf{X}\left(t\right) $ is completely characterized by the characteristic function.

Note

$ f_{\mathbf{X}}\left(x\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega x}\Phi_{\mathbf{X}}\left(\omega\right)d\omega. $

(c)

Show that if $ \mathbf{X}\left(t\right) $ is wide-sense stationary then it is also strict-sense stationary.

Note

You can use the theorem and its proof for solving this problem.

4. (25 Points)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\mathbf{X}_{3},\cdots $ be a sequence of independent, identically distributed random variables, each having Cauchy pdf $ f\left(x\right)=\frac{1}{\pi\left(1+x^{2}\right)}\;,\qquad-\infty<x<\infty. Let \mathbf{Y}_{n}=\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}. $ Find the pdf of $ \mathbf{Y}_{n} $ . Describe how the pdf of $ \mathbf{Y}_{n} $ depends on $ n $ . Does the sequence $ \mathbf{Y}_{1},\mathbf{Y}_{2},\mathbf{Y}_{3},\cdots $ converge in distribution? If yes, what is the distribution of the random variable it converges to?

Note

You can see the definition of the converge in distribution. Furthermore, you have to know the characteristic function of Cauchy distributed random varaible.

Solution

According to the characteristic function of Cauchy distributed random variable,

$ \Phi_{\mathbf{X}}\left(\omega\right)=e^{-\left|\omega\right|}. $

$ \Phi_{\mathbf{Y}_{n}}\left(\omega\right)=E\left[\exp\left\{ i\omega\mathbf{Y}_{n}\right\} \right]=E\left[\exp\left\{ i\frac{\omega}{n}\sum_{k=1}^{n}\mathbf{X}_{k}\right\} \right]=E\left[\prod_{k=1}^{n}\exp\left\{ i\frac{\omega}{n}\mathbf{X}_{k}\right\} \right] $$ =E\left[\exp\left\{ i\frac{\omega}{n}\mathbf{X}\right\} \right]^{n}=\Phi_{\mathbf{X}}\left(\frac{\omega}{n}\right)^{n}=\left[e^{-\left|\omega/n\right|}\right]^{n}=e^{-\left|\omega\right|}. $

$ f_{\mathbf{Y}_{n}}\left(\omega\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-i\omega y}e^{-\left|\omega\right|}d\omega=\frac{1}{2\pi}\left[\int_{-\infty}^{0}e^{-i\omega y}e^{\omega}d\omega+\int_{0}^{\infty}e^{-i\omega y}e^{-\omega}d\omega\right] $$ =\frac{1}{2\pi}\left[\int_{-\infty}^{C}e^{\omega\left(1-iy\right)}+\int_{C}^{\infty}e^{-\omega\left(1+iy\right)}d\omega\right]=\frac{1}{2\pi}\left[\frac{1}{1-iy}e^{\omega\left(1-iy\right)}\biggl|_{-\infty}^{C}+\frac{-1}{1+iy}e^{-\omega\left(1+iy\right)}\biggl|_{C}^{\infty}\right] $$ =\frac{1}{2\pi}\left[\frac{1}{1-iy}+\frac{1}{1+iy}\right]=\frac{1}{2\pi}\left[\frac{1+iy+1-iy}{1+y^{2}}\right]=\frac{1}{2\pi}\cdot\frac{2}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}. $


Back to ECE600

Back to ECE 600 QE

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett