Revision as of 17:02, 30 September 2013 by Mhossain (Talk | contribs)


Theorem

Intersection is distributive over union ⇔ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
$ A\cap (B\cup C) = (A\cap B)\cup (A\cap C $
where $ A $, $ B $ and $ C $ are events in a probability space.



Proof

Let x ∈ A ∩ (B ∪ C). Then, x ∈ A and x ∈ (B ∪ C) ⇒ x ∈ A and at the same time, x ∈ B or x ∈ C, possibly both ⇒ either x ∈ A and x ∈ B or x ∈ A and x ∈ C (possibly both). Hence, x ∈ (A ∩ B) or x ∈ (A ∩ C), i.e. x ∈ (A ∩ B) ∪ (A ∩ C).
So we have that x ∈ A ∩ (B ∪ C) ⇒ x ∈ (A ∩ B) ∪ (A ∩ C), which is equivalent to saying that A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C).

Next we assume that x ∈ (A ∩ B) ∪ (A ∩ C). Then, x ∈ (A ∩ B) or x ∈ (A ∩ C)⇒ x ∈ A in addition to being in B, C or both ⇒ x ∈ A ∩ (B ∪ C).
This gives us that x ∈ (A ∩ B) ∪ (A ∩ C) ⇒ x ∈ (A ∩ B) ∪ (A ∩ C)A ∩ (B ∪ C), which is equivalent to saying that (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C).

Combining the two results we have that:
A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C) and (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C). ⇔ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
$ \blacksquare $




References

  • W. Rudin, "Basic Topology" in "Principles of Mathematical Analysis", 3rd Edition, McGraw-Hill Inc. ch 2, pp 28.



Back to list of all proofs

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett