(New page: [Category:ECE600]] Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 8: Functions of Random Variables</font size> </c...)
 
Line 1: Line 1:
[Category:ECE600]]
+
[[Category:ECE600]]
 
[[Category:Lecture notes]]
 
[[Category:Lecture notes]]
  

Revision as of 09:10, 11 October 2013


Random Variables and Signals

Topic 8: Functions of Random Variables




We often do not work with the random variable we observe directly, but with some function of that random variable. So, instead of working with a random variable X, we might instead have some random variable Y=g(X) for some function g:RR.
In this case, we might model Y directly to bet f$ _Y $(y), especially if we do not know g. Or we might have a model for X and find f$ _Y $(y) (or p$ _Y $(y)) as a function of f$ _X $ (or p$ _X $ and g.
We will discuss the latter approach here.

More formally, let X be a random variable on (S,F,P) and consider a mapping g:RR. Then let Y$ (\omega)= $g(X($ \omega)) $$ \omega $S.
We normally write this as Y=g(X).

Graphically,

Fig 1: Mapping from S to X to Y under g


Is Y a random variable? We must have Y$ ^{-1} $(A) ≡ {$ \omega $S: Y$ (\omega) $ ∈ A} = {$ \omega $S: g(X$ (\omega) $) ∈ A} be an element of F ∀A ∈ B(R) (Y must be Borel measurable).
We will only consider functions g in this class for which Y$ ^{-1} $(A) ∈ F ∀A ∈ B(R), so that if Y=g(X) for some random variable X, Y will be a random variable.

What is the distribution of Y? Consider 3 cases:

  1. X discrete, Y discrete
  2. X continuous, Y discrete
  3. X continuous, Y continuous

Note: you cannot have a continuous Y from a discrete X.

Case 1: X & Y discrete
Let $ R_X $≡ X(S) be the range space of X and math>R_Y</math>≡ g(X(S)) be the range space of Y. Then the pmf of Y is

p$ _Y $(y) = P(Y=y) = P(g(X)=y)

But this means that

$ p_Y(y) = \sum_{x\in\mathcal{R}_X:g(x)=y}p_X(x)\;\;\forall y\in\mathcal{R}_Y $


Example $ \quad $ Let X be the value rolled on a die and

$ Y = \begin{cases} 1 & \mbox{if}\;X\;\mbox{is odd} \\ 0 & \mbox{if}\;X\;\mbox{is even} \end{cases} $

Then R$ _X $ = {0,1,2,3,4,5,6} and R$ _Y $ = {0,1} and g(x) = x % 2.

Now
$ p_Y(y) = \sum_{x\in\mathcal{R}_X:g(x)=y}p_X(x) $
$ \begin{align} \Rightarrow p_Y(0) &= p_X(2)+p_X(4)+p_X(6) \\ p_Y(1) &= p_X(1)+p_X(3)+p_X(5) \end{align} $


Case 2: X continuous, Y discrete
The pmf of Y in this case is

p$ _Y $(y) = P(g(X)=y) = P(X ∈ D</math>_Y</math>) =

where D$ _Y $ ≡ {x ∈ R: g(x)=y} ∀y ∈ R$ _Y $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch