Line 138: Line 138:
 
==Cauchy Criterion for Convergence==
 
==Cauchy Criterion for Convergence==
  
We will now discuss a method
+
We will now discuss a method for showing that X<math>_n</math> → X in the mean square sense for some random variables X without knowing what X is. Frist, consider a sequence of real numbers.
 +
 
 +
'''Definition''' If x<math>_n</math> is a sequence of real numbers and <br/>
 +
<center><math>|x_{m+n}-x_n|\rightarrow 0</math><br/>
 +
as<br/>
 +
<math>n\rightarrow \infty \quad \forall m>0</math></center>
 +
 
 +
then x<math>_n</math> converges iff it is a Cauchy sequence. This is known as the Cauchy criterion for convergence.
 +
 
 +
'''The Cauchy Criterion for mean square convergence of X<math>_n</math>''' <math>\qquad</math>

Revision as of 10:09, 22 November 2013

Back to all ECE 600 notes


Random Variables and Signals

Topic 18: Stochastic Convergence



Stochastic Convergence

We will now consider infinite sequences of random variables. We will discuss what it means for such a sequence to converge. This will lead to some very important results: the laws of large numbers and the Central Limit Theorem.

Consider a sequence X$ _1 $,X$ _2 $,..., where each X$ _i $ is a random variable on (S,F,P). We will call this a random sequence (or a discrete-time random process).

Notation $ \qquad $ X$ _n $ may refer to either the sequence itself or to the nth element in the sequence. We may also use {X$ _n $} to denote the sequence, or X$ _n $, n ≥ 1.

The sequence X$ _n $ maps S to the set of all sequences of real numbers, so for a fixed S, X$ _1(\omega) $,X$ _2(\omega) $,... is a sequence of real numbers.

Fig 1: The mapping from the sample space to the reals under X$ _j $.


Before looking at convergence, recall the meaning of convergence or a sequence of real numbers.

Definition $ \qquad $ A sequence of real numbers x$ _1 $,x$ _2 $,... converges to a number x ∈ R if ∀$ \epsilon $ > 0, ∃ an n$ _{\epsilon} $N such that

$ |x_n-x|<\epsilon\qquad\forall n\geq n_{\epsilon} $

If there is such an x ∈ R, we say

$ \lim_{n\rightarrow\infty}x_n=x $

or

$ x_n\rightarrow\infty\;\mbox{as}\;n\rightarrow\infty $

For a random sequence X$ _n $, the issue of convergence is more complicated since X$ _n $ is a function of $ \omega $S.

First look at a motivating example.

Example $ \qquad $ Let X$ _k $ = s + W$ _k $, where s ∈ R and W$ _k $ is a random sequence with E[W$ _k $] = 0 ∀k = 1,2,.... W$ _k $ can be viewed as a noise sequence if we want to know the value of s.

Let

$ Y_n=\frac{1}{n}\sum_{k=1}^nX_k $

Then, E[Y$ _n $] = s ∀n. But Y$ _n $ is a random variable, so we cannot expect Y$ _n $ = s ∀n. However, we intuitively expect Y$ _n $ to be a better estimate of s as n increases. Does Y$ _n $ → s as n → ∞ ? If so, in what sense?



Types of Convergence

Since X$ _n(\omega) $ is generally a different sequence for very $ \omega $S, what does it mean for X$ _n $ to converge? We will discuss different ways in which X$ _n $ can converge.

Definition $ \qquad $ X$ _n $ converges everywhere if the sequence X$ _1(\omega) $,X$ _2(\omega) $,... converges to some value X$ (\omega) $$ \omega $S. We also call this sure convergence or convergence surely.


Fig 2: Sure Convergence.

Notation

$ X_n\overset{e}{\rightarrow}X $


Definition $ \qquad $ X$ _n $ converges almost everywhere or almost surely, if X$ _n(\omega) $ → for some A ∈ S with P(A) = 1. Also known as convergence with probability 1.

Notation

$ X_n\overset{a.e.}{\rightarrow}X,\quad X_n\overset{a.s.}{\rightarrow}X,\quad X_n\overset{w.p.1}{\rightarrow}X $


Definition $ \qquad $ X$ _n $ converges in mean square to X if

$ E\left[|X_n-X|^2\right]\rightarrow 0 $

as

$ n\rightarrow\infty $

Notation

$ X_n\overset{ms}{\rightarrow}X $


Definition X$ _n $ converges in probability to X if ∀$ \epsilon $ > 0

$ P(|X_n-X|>\epsilon)\rightarrow 0 $

as

$ n\rightarrow\infty $

Note that P(|X$ _n $ - X| > $ \epsilon $) is a sequence of real numbers.

Notation

$ X_n\overset{p}{\rightarrow}X $


Definition $ \qquad $ X$ _n $ converges in distribution to X if

$ F_{X_n}(x)\rightarrow F_X(x) $

as

$ n\rightarrow\infty $

Note that for a fixed x ∈ R, F$ _n $(x) is a sequence of real numbers.

Notation

$ X_n\overset{d}{\rightarrow}X $

We will generally assume that if X$ _n $ converges in distribution, then

$ \frac{F_{X_n}(x)}{dx}\rightarrow\frac{F_X(x)}{dx} $

or
$ f_{X_n}(x)\rightarrow f_X(x) $
as

$ n\rightarrow\infty $

although this is not true in every instance, as seen in the next example.

Example $ \qquad $ Let X$ _n $ have pdf

$ f_{X_n}(x) = 1+\cos 2\pi nx\quad0\leq x\leq 1,\;\;n=1,2,... $

Then

$ F_{X_n}(x) = \begin{cases} 0 & x<0 \\ x+\frac{\sin 2\pi nx}{2\pi n} & 0\leq x\leq 1 \\ 1 & x>1 \end{cases} $

Now

$ F_{X_n}(x)\rightarrow F_X(x) $

as
$ n\rightarrow\infty $

$ \forall x\in\mathbb R $

where

$ F_X(x)=\begin{cases} 0 & x<0 \\ x & 0\leq x\leq 1 \\ 1 & x>1 \end{cases} $

However, f$ _{Xn} $ does not converge for x ∈ (0,1).



Cauchy Criterion for Convergence

We will now discuss a method for showing that X$ _n $ → X in the mean square sense for some random variables X without knowing what X is. Frist, consider a sequence of real numbers.

Definition If x$ _n $ is a sequence of real numbers and

$ |x_{m+n}-x_n|\rightarrow 0 $

as

$ n\rightarrow \infty \quad \forall m>0 $

then x$ _n $ converges iff it is a Cauchy sequence. This is known as the Cauchy criterion for convergence.

The Cauchy Criterion for mean square convergence of X$ _n $ $ \qquad $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva