Line 14: Line 14:
 
----
 
----
  
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and y.  
+
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and Y.  
  
 
'''Definition''' <math>\qquad</math> Two random variables X and Y on (''S,F,''P) are '''statistically independent''' if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ ''F''. i.e. <br/>
 
'''Definition''' <math>\qquad</math> Two random variables X and Y on (''S,F,''P) are '''statistically independent''' if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ ''F''. i.e. <br/>

Revision as of 14:59, 12 November 2013

Back to all ECE 600 notes


Random Variables and Signals

Topic 12: Independent Random Variables



We have previously defined statistical independence of two events A and b in F. We will now use that definition to define independence of random variables X and Y.

Definition $ \qquad $ Two random variables X and Y on (S,F,P) are statistically independent if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ F. i.e.

$ P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F $

There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff

$ f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R $


First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then,

$ \begin{align} F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\ &= P(X\in A,Y\in B) \\ &= P(X\in A)P(Y\in B) \\ &= P(X\leq x)P(Y\leq y) \\ &= F_X(x)F_Y(y) \\ \Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y) \end{align} $

Now assume that f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y) ∀x,y ∈ R. Then, for any A,B ∈ B(R)

$ \begin{align} P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\ &=\int_A\int_Bf_X(x)f_Y(y)dydx \\ &=\int_Af_X(x)dx\int_Bf_Y(y)dy \\ &= P(X\in A)P(Y\in B) \end{align} $

Thus, X and Y are inedependent iff f$ _{XY} $(x,y) = f$ _X $f)X$ _Y $.



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman