(New page: Category:ECE600 Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 12: Random Variables: Distributions</font size>...)
 
m (Protected "ECE600 F13 Independent Random Variables mhossain" [edit=sysop:move=sysop])
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE600]]
 
[[Category:ECE600]]
 
[[Category:Lecture notes]]
 
[[Category:Lecture notes]]
 +
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
 +
 +
 +
[[Category:ECE600]]
 +
[[Category:probability]]
 +
[[Category:lecture notes]]
 +
[[Category:slecture]]
  
 
<center><font size= 4>
 
<center><font size= 4>
'''Random Variables and Signals'''
+
[[ECE600_F13_notes_mhossain|'''The Comer Lectures on Random Variables and Signals''']]
 
</font size>
 
</font size>
  
<font size= 3> Topic 12: Random Variables: Distributions</font size>
+
[https://www.projectrhea.org/learning/slectures.php Slectures] by [[user:Mhossain | Maliha Hossain]]
 +
 
 +
 
 +
<font size= 3> Topic 12: Independent Random Variables</font size>
 
</center>
 
</center>
 +
 +
----
 +
----
 +
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and Y.
 +
 +
'''Definition''' <math>\qquad</math> Two random variables X and Y on (''S,F,''P) are '''statistically independent''' if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ ''F''. i.e. <br/>
 +
<center><math>P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F</math></center>
 +
 +
There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff <br/>
 +
<center><math>f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R</math></center>
 +
 +
 +
First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then, <br/>
 +
<center><math>\begin{align}
 +
F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\
 +
&= P(X\in A,Y\in B) \\
 +
&= P(X\in A)P(Y\in B) \\
 +
&= P(X\leq x)P(Y\leq y) \\
 +
&= F_X(x)F_Y(y) \\
 +
\Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y)
 +
\end{align}</math></center>
 +
 +
Now assume that f<math>_{XY}</math>(x,y) = f<math>_X</math>(x)f<math>_Y</math>(y) ∀x,y ∈ '''R'''. Then, for any A,B ∈ B('''R''')<br/>
 +
<center><math>\begin{align}
 +
P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\
 +
&=\int_A\int_Bf_X(x)f_Y(y)dydx \\
 +
&=\int_Af_X(x)dx\int_Bf_Y(y)dy \\
 +
&= P(X\in A)P(Y\in B)
 +
\end{align}</math></center>
 +
 +
Thus, X and Y are independent iff f<math>_{XY}</math>(x,y) = f<math>_X</math>(x)f<math>_Y</math>(y).
  
  
 
----
 
----
 +
 +
== References ==
 +
 +
* [https://engineering.purdue.edu/~comerm/ M. Comer]. ECE 600. Class Lecture. [https://engineering.purdue.edu/~comerm/600 Random Variables and Signals]. Faculty of Electrical Engineering, Purdue University. Fall 2013.
 +
 +
 +
----
 +
 +
==[[Talk:ECE600_F13_Independent_Random_Variables_mhossain|Questions and comments]]==
 +
 +
If you have any questions, comments, etc. please post them on [[Talk:ECE600_F13_Independent_Random_Variables_mhossain|this page]]
 +
 +
 +
----
 +
 +
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]

Latest revision as of 12:12, 21 May 2014

Back to all ECE 600 notes

The Comer Lectures on Random Variables and Signals

Slectures by Maliha Hossain


Topic 12: Independent Random Variables



We have previously defined statistical independence of two events A and b in F. We will now use that definition to define independence of random variables X and Y.

Definition $ \qquad $ Two random variables X and Y on (S,F,P) are statistically independent if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ F. i.e.

$ P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F $

There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff

$ f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R $


First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then,

$ \begin{align} F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\ &= P(X\in A,Y\in B) \\ &= P(X\in A)P(Y\in B) \\ &= P(X\leq x)P(Y\leq y) \\ &= F_X(x)F_Y(y) \\ \Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y) \end{align} $

Now assume that f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y) ∀x,y ∈ R. Then, for any A,B ∈ B(R)

$ \begin{align} P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\ &=\int_A\int_Bf_X(x)f_Y(y)dydx \\ &=\int_Af_X(x)dx\int_Bf_Y(y)dy \\ &= P(X\in A)P(Y\in B) \end{align} $

Thus, X and Y are independent iff f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y).



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett