(New page: Category:ECE600 Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 7: Random Variables: Conditional Distributions<...)
 
Line 11: Line 11:
  
 
----
 
----
 +
  
 
Thus far, we have learned how to represent the probabilistic behavior or random variables X using the density function f<math>_X</math> or the mass function p<math>_X</math>. <br/>
 
Thus far, we have learned how to represent the probabilistic behavior or random variables X using the density function f<math>_X</math> or the mass function p<math>_X</math>. <br/>
Line 58: Line 59:
 
<math>E[Y] = \sum_{y\in\mathcal R_Y}yp_Y(y)</math></center>
 
<math>E[Y] = \sum_{y\in\mathcal R_Y}yp_Y(y)</math></center>
  
We can find this by first finding f<math>_Y</math> or p<math>_Y</math> in terms of g and f</math>_X,/math> or p<math>_X</math>. Alternatively, it can be shown that <br/>
+
We can find this by first finding f<math>_Y</math> or p<math>_Y</math> in terms of g and f<math>_X,/math> or p<math>_X</math>. Alternatively, it can be shown that <br/>
 
<center><math>E[Y]=E[g(X)]=\int_{-\infty}^{\infty}g(x)f_X(x)dx</math><br/>
 
<center><math>E[Y]=E[g(X)]=\int_{-\infty}^{\infty}g(x)f_X(x)dx</math><br/>
 
or<br/>
 
or<br/>
Line 99: Line 100:
  
 
<center><math>E[X^2] =  \int_{-\infty}^{\infty}\frac{x^2}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx</math></center>
 
<center><math>E[X^2] =  \int_{-\infty}^{\infty}\frac{x^2}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx</math></center>
Using integration by parts, we see that this integral evaluates to <math>\sigma^2+\mu^2<\math>. So, <br/>
+
Using integration by parts, we see that this integral evaluates to <math>\sigma^2+\mu^2</math>. So, <br/>
 
<center><math>Var(X) = \sigma^2+\mu^2-\mu^2 = \sigma^2</math></center>
 
<center><math>Var(X) = \sigma^2+\mu^2-\mu^2 = \sigma^2</math></center>
  

Revision as of 21:55, 21 October 2013


Random Variables and Signals

Topic 7: Random Variables: Conditional Distributions




Thus far, we have learned how to represent the probabilistic behavior or random variables X using the density function f$ _X $ or the mass function p$ _X $.
Sometimes, we want to describe X probabilistically using only a small number of parameters. The expectation is often used to do this.

Definition $ \qquad $ the expected value of continuous random variable X is defined as

$ E[X) = \int_{-\infty}^{\infty}xf_X(x)dx $


Definition $ \qquad $ the expected value of discrete random variable X is defined as

$ E[X] = \sum_{x\in\mathcal R_X}xp_X(x) $

where $ R_X $ is the range space of X.

Note:

  • E[X] is also known as the mean of X. Other notation for E[X] include:
$ EX,\;\overline{X},\;m_X,\;\mu_X $
  • The equation defining E[X] for discrete X could have been derived from the continuous X, using the density function f$ _X $ containing $ \delta $-functions.

Example $ \qquad $ X is an exponential random variable. find E[X].

$ f_X(x) = \lambda e^{-\lambda x}u(x) \ $

$ \begin{align} E[X] &= \int_{-\infty}^{\infty}xf_X(x)dx \\ &= \int_{0}^{\infty}x\lambda e^{-\lambda x}dx \\ &= \frac{1}{\lambda} \end{align} $

Let $ \mu = 1/\lambda $. We often write

$ f_X(x) = \frac{1}{\mu} e^{-\frac{1}{\mu}x}u(x) \ $


Example $ \qquad $ X is a uniform discrete random varibable with $ R_X $ = {1,...,n}. Then,

$ \begin{align} E[X]&=\sum_{k=1}^n\frac{k}{n} \\ &=\frac{1}{n}\sum_{k=1}^n k \\ \\ &= \frac{1}{n}(\frac{1}{2})(n)(n+1) \\ \\ &=\frac{n+1}{2} \end{align} $


Having defined E[X], we will now consider more general E[g(X)] for a function g:RR.

Let Y = g(X). What is E[Y]? From previous definitions:

$ E[Y]=\int_{-\infty}^{\infty}yf_Y(y)dy $

or

$ E[Y] = \sum_{y\in\mathcal R_Y}yp_Y(y) $

We can find this by first finding f$ _Y $ or p$ _Y $ in terms of g and f$ _X,/math> or p<math>_X $. Alternatively, it can be shown that

$ E[Y]=E[g(X)]=\int_{-\infty}^{\infty}g(x)f_X(x)dx $

or

$ E[Y] = E[g(X)]=\sum_{y\in\mathcal R_X}g(x)p_X(x) $

See Papoulis for the proof of the above.

Two important cases or functions g:

  • g(x) = x. Then E[g(X)] = E[X]
  • g(x) = (x - $ \mu_X)^2 $. Then E[g(X)] = E[(X - $ \mu_X)^2 $]
$ E[g(X)] = \int_{-\infty}^{\infty}(x-\mu_X)^2f_X(x)dx $

or

$ E[g(X)] = \sum_{x\in\mathcal R_x}(x-\mu_X)^2p_X(x) $

Note: $ \qquad $ E[(X - $ \mu_X)^2 $] is called the variance of X and is often denoted $ \sigma_X $$ ^2 $. $ \sigma_X $ is called the standard deviation of X.

Important property of E[]:
Let g$ _1 $:RR; g$ _2 $:RR; $ \alpha,\beta $R, Then

$ E[\alpha g_1(X) +\beta g_2(X)] = \alpha E[g_1(X)]+\beta E[g_2(X)] \ $

So E[] is a linear operator. The proof follows from the linearity of integration.

Important property of Var():

$ Var(X) = E[X^2]-\mu_X^2 $

Proof:

$ \begin{align} E[(X-\mu)^2]&=E[X^2-2X\mu_X+\mu_X^2] \\ &=E[X^2]-2\mu_XE[X]+E[\mu_X^2] \\ &=E[X^2]-2\mu_X^2+\mu_X^2 \\ &=E[X^2]-\mu_X^2 \end{align} $


Example $ \qquad $ X is Gaussian N($ \mu,\sigma^2 $). Find E[X} and Var(X).

$ E[X] = \int_{-\infty}^{\infty}\frac{x}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx $

Let r = x - $ \mu $. Then

$ E[X] = \int_{-\infty}^{\infty}\frac{r}{\sqrt{2\pi}\sigma}e^{-\frac{r^2}{2\sigma^2}}dr\;+\; \mu\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{r^2}{2\sigma^2}}dr $

First term: Integrating an odd function over (-∞,∞) ⇒ first term is 0.
Second term: Integrating a Gaussian pdf over (-∞,∞) gives one ⇒ second term is $ \mu $.
So E[X] = $ \mu $

$ E[X^2] = \int_{-\infty}^{\infty}\frac{x^2}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx $

Using integration by parts, we see that this integral evaluates to $ \sigma^2+\mu^2 $. So,

$ Var(X) = \sigma^2+\mu^2-\mu^2 = \sigma^2 $


Example $ \qquad $ X is Poisson with parameter $ \lambda $. Find E[X] and Var(X).

$ \begin{align} E[X] &= \sum_{k=0}^{\infty}k\frac{e^{-\lambda}\lambda^k}{k!} \\ &= \sum_{k=1}^{\infty}k\frac{e^{-\lambda}\lambda^k}{(k-1)!} \\ &= \lambda\sum_{k=0}^{\infty}e^{-\lambda}\frac{\lambda^k}{k!} \\ &= \lambda \end{align} $


$ \begin{align} E[X^2] &= \sum_{k=0}^{\infty}k^2\frac{e^{-\lambda}\lambda^k}{k!} \\ &= \sum_{k=0}^{\infty}(k+1)\frac{e^{-\lambda}\lambda^{k+1}}{k!} \\ &= \lambda\sum_{k=0}^{\infty}\frac{ke^{-\lambda}\lambda^k}{k!}\;+\;\lambda\sum_{k=0}^{\infty}\frac{e^{-\lambda}\lambda^k}{k!} \\ \\ &= \lambda E[X] + \lambda(1) \\ &= \lambda^2+\lambda \end{align} $

So,
$ E[X^2] = \lambda^2 +\lambda \ $
$ \Rightarrow Var(X) = \lambda^2 +\lambda - \lambda = \lambda \ $



Moments


Conditional Expectation

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009