Line 85: Line 85:
  
 
<center><math>\begin{align}
 
<center><math>\begin{align}
E[X]&=\int\int_{\mathbb R^2}x_f{XY}(x,y)dxdy \\
+
E[X]&=\int\int_{\mathbb R^2}xf_{XY}(x,y)dxdy \\
 
&=\int_{\mathbb R}xf_X(x)dx
 
&=\int_{\mathbb R}xf_X(x)dx
 
\end{align}</math></center>
 
\end{align}</math></center>

Revision as of 06:28, 14 November 2013

Back to all ECE 600 notes


Random Variables and Signals

Topic 16: Conditional Expectation for Two Random Variables



If X and Y are random variables on (S,F,P) and ∈ F with P(M) > 0, then,

$ E[g(X,Y)|M] = \int\int_{\mathbb R^2} g(x,y)f_{XY}(x,y|M)dxdy $

One important case is when M = {Y = y} for some y ∈ R. Then we have that

$ E[g(X,Y)|Y=y]=\int\int_{\mathbb R^2}g(x,y')f_{XY}(x,y'|Y=y)dxdy' $

Using our old trick, let

$ E[g(X,Y)|Y=y]=\lim_{\Delta y\rightarrow 0}\int\int_{\mathbb R^2}g(x,y')f_{XY}(x,y'|y<Y\leq y+\Delta y)dxdy' $

Using this approach, it can be shown that

$ \begin{align} E[g(X,Y)|Y=y]&=E[g(X,y)|Y=y] \\ &=\int_{-\infty}^{\infty}g(x,y)f_{X|Y}(x|y)dx \\ \end{align} $


Another important case: g(X,Y)=g(X)

$ \begin{align} E[g(X)|M]&=\int\int g(x)f_{XY}(x,y|M)dxdy \\ &=\int g(x)\left[\int f_{XY}(x,y|M)dy\right]dx \\ &=\int g(x)f_X(x|M)dx \end{align} $

Note that this is the same equation we had, for example

$ E[g(X)|Y=y]=\int g(x)f_{X|Y}(x|y)dx $



Iterated Expectation

Sometimes we want to work with f$ _{Y|X} $(y|x) and f$ _X $(x) instead of f$ _{XY} $(x,y). This can make computation of E[g(X,Y)] easier in some cases. We can write

$ \begin{align} E[g(X,Y)]&=\int\int_{\mathbb R^2}g(x,y)f_{XY}(x,y)dxdy \\ &=\int\int_{\mathbb R^2}f_X(x)g(x,y)f_{Y|X}(y|x)dydx \\ &=\int_{\mathbb R}f_X(x)E[g(X,Y)|X=x]dx \end{align} $

Note that E[g(X,Y)|X=x] is a function of x ∈ R. We will call this function h.

$ h(x)=E[g(X,Y)|X=x]\qquad h:\mathbb R\rightarrow\mathbb R $

We can create a random variable h(X). We will use the notation

$ E[g(X,Y)|X]\equiv h(X) $

So we have

$ h(x) = E[g(X,Y)|X=x] \ $

which is a real-valued function of x ∈ R, and h(X), which is a random variable since it is a function of random variable X.

Now we can write

$ \begin{align} E[g(X,Y)]&=\int_{\mathbb R}E[g(X,Y)|X=x]f_X(x)dx \\ &= \int_{\mathbb R}h(x)f_X(x)dx \\ &=h(X) \end{align} $

So,

$ E[g(X,Y)] = E[E[g(X,Y)|X]] \ $

We call this iterated expectation.

An important special case is when g(X,Y)=Y, in which case, we have

$ E[Y]=E[E[Y|X]] \ $


Example $ \qquad $ Suppose we have a stick of length l. We break the stick at a uniformly chosen point Y, then again at a uniformly chosen point X. Find E[X].


Fig 1: example problem


$ \begin{align} E[X]&=\int\int_{\mathbb R^2}xf_{XY}(x,y)dxdy \\ &=\int_{\mathbb R}xf_X(x)dx \end{align} $

We do not know f$ _{XY} $ or f_$ _X $, but we know f$ _{X|Y} $ or f_$ _Y $

$ \begin{align} f_Y(y)&=\frac{1}{l}\qquad\ &0\leq y\leq l \\ f_{X|Y}(x|y)&=\frac{1}{y}\qquad &0\leq x\leq y \end{align} $

Use E[X]=E[E[X|Y]]. Now

$ h(h)\equiv E[X|Y=y] = \frac{y}{2} $

since X is uniform on [0,y] given Y=y. So,

$ h(Y)=\frac{Y}{2} $

Then

$ E[X]=E\left[\frac{Y}{2}\right]=\frac{1}{2}E[Y]=\frac{1}{2}.\frac{l}{2}=\frac{l}{4} $



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin