Line 14: Line 14:
 
&x(n)=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{j2\pi kn}{N}} \\
 
&x(n)=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{j2\pi kn}{N}} \\
 
&\text{Switch n and k} \\
 
&\text{Switch n and k} \\
\Leftrightarrow &x(k)=\frac{1}{N}\sum_{k=0}^{N-1}X(n)e^{j\frac{j2\pi kn}{N}} \\
+
\Leftrightarrow &x(k)=\frac{1}{N}\sum_{n=0}^{N-1}X(n)e^{j\frac{j2\pi kn}{N}} \\
\Leftrightarrow &Nx(-k)=\sum_{k=0}^{N-1}X(n)e^{-j\frac{j2\pi kn}{N}}=\text{ DFT of }X(n)
+
\Leftrightarrow &Nx(-k)=\sum_{n=0}^{N-1}X(n)e^{-j\frac{j2\pi kn}{N}}=\text{ DFT of }X(n)
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Latest revision as of 06:40, 21 October 2010

ECE438 Week9 Quiz Question6 Solution


The Duality Property of DFT is descriped below:

$ \text{If the DFT of }x[n]\text{ is denoted as }X(k)\text{ with a length of N} $

$ \text{Then the DFT of }X(n)\text{ is }Nx(-k) $

Derivation:

$ \begin{align} &x(n)=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{j2\pi kn}{N}} \\ &\text{Switch n and k} \\ \Leftrightarrow &x(k)=\frac{1}{N}\sum_{n=0}^{N-1}X(n)e^{j\frac{j2\pi kn}{N}} \\ \Leftrightarrow &Nx(-k)=\sum_{n=0}^{N-1}X(n)e^{-j\frac{j2\pi kn}{N}}=\text{ DFT of }X(n) \end{align} $

Conclusion:

if $ x(n)\xrightarrow{DFT} X(k) $

then $ X(n)\xrightarrow{DFT} Nx(-k) $


Back to Quiz Pool

Back to Lab Wiki

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang