(New page: ==ECE438 Week9 Quiz Question5 Solution== a. System impulse response is the system output when input is impulse signal. Let <math>x[n]=\delta [n]</math> Then <math> \begin{align} h[n]...)
 
Line 8: Line 8:
  
 
Then
 
Then
 +
 +
<math>h[n]=\frac{1}{M_1+M_2+1}\sum_{k=-M_1}^{M_2}\delta[n-k] </math>
 +
 +
<math>h[n]=\left\{\begin{array}{ll}\frac{1}{M_1+M_2+1}, & -M_1\le n\le M_2 \\ 0, & otherwise \end{array}\right. </math>
 +
 +
b.
  
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
h[n]&=\frac{1}{M_1+M_2+1}\sum_{k=-M_1}^{M_2}\delta[n-k]  
+
H(e^{j\omega})&=\sum_{k=-\infty}^{infty}h[k]e^{-j\omega k} \\
 +
&=\frac{1}{M_1+M_2+1}\sum_{k=-M_1}^{M_2}e^{-j\omega k} \\
 +
&=\frac{1}{M_1+M_2+1}\frac{e^{j\omega M_1}-e^{-j(M_2+1)}}{1-e^{-j\omega}} \\
 +
&=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1+1)/2}\frac{e^{j\omega (M_1+M_2+1)/2}-e^{-j(M_1+M_2+1)/2}}{1-e^{-j\omega}} \\
 +
&=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1)/2}\frac{e^{j\omega (M_1+M_2+1)/2}-e^{-j(M_1+M_2+1)/2}}{e^{j\omega /2}-e^{-j\omega /2}} \\
 +
&=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1)/2}\frac{sin[\omega(M_1+M_2+1)/2]}{sin(\omega /2)}
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
<math>h[n]=\left\{\begin{array}{ll}\frac{1}{M_1+M_2+1}, & -M_1\le n\le M_2 \\ 0, & otherwise \end{array}\right. </math>
+
c.

Revision as of 17:43, 20 October 2010

ECE438 Week9 Quiz Question5 Solution

a. System impulse response is the system output when input is impulse signal.

Let

$ x[n]=\delta [n] $

Then

$ h[n]=\frac{1}{M_1+M_2+1}\sum_{k=-M_1}^{M_2}\delta[n-k] $

$ h[n]=\left\{\begin{array}{ll}\frac{1}{M_1+M_2+1}, & -M_1\le n\le M_2 \\ 0, & otherwise \end{array}\right. $

b.

$ \begin{align} H(e^{j\omega})&=\sum_{k=-\infty}^{infty}h[k]e^{-j\omega k} \\ &=\frac{1}{M_1+M_2+1}\sum_{k=-M_1}^{M_2}e^{-j\omega k} \\ &=\frac{1}{M_1+M_2+1}\frac{e^{j\omega M_1}-e^{-j(M_2+1)}}{1-e^{-j\omega}} \\ &=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1+1)/2}\frac{e^{j\omega (M_1+M_2+1)/2}-e^{-j(M_1+M_2+1)/2}}{1-e^{-j\omega}} \\ &=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1)/2}\frac{e^{j\omega (M_1+M_2+1)/2}-e^{-j(M_1+M_2+1)/2}}{e^{j\omega /2}-e^{-j\omega /2}} \\ &=\frac{1}{M_1+M_2+1}e^{-j\omega (M_2-M_1)/2}\frac{sin[\omega(M_1+M_2+1)/2]}{sin(\omega /2)} \end{align} $

c.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett