(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q5 of Week 6 Quiz Pool == ---- Image:upsample.jpg <math> \begin{align} \text{(a)} \quad & x[n] = \delta[n] \\ & X(e^{jw}) ...)
 
Line 53: Line 53:
  
 
----
 
----
 +
Credit: Prof. Charles Bouman
 +
 
Back to [[ECE438_Week6_Quiz|Lab Week 6 Quiz Pool]]
 
Back to [[ECE438_Week6_Quiz|Lab Week 6 Quiz Pool]]
  

Revision as of 07:51, 27 September 2010



Solution to Q5 of Week 6 Quiz Pool


Upsample.jpg

$ \begin{align} \text{(a)} \quad & x[n] = \delta[n] \\ & X(e^{jw}) = 1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = 1 \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = 2\text{rect}\Big(\frac{w}{\pi}\Big) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}n\big)}{\pi n} \\ \end{align} \,\! $

$ \begin{align} \text{(b)} \quad & x[n] = \delta[n-1] \\ & X(e^{jw}) = e^{-jw}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = e^{-j2w}(1) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = e^{-j2w} \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 2\frac{\text{sin}\big(\frac{\pi}{2}(n-2)\big)}{\pi n} \\ \end{align} \,\! $

Note that, since it is upsampled by a factor of 2, $ z[n] $ is shifted 2 to the right compared to $ z[n] $ of (a), even though the input $ x[n] $ is shifted 1 to the right compared to the input $ x[n] $ of (a).

$ \begin{align} \text{(c)} \quad & x[n] = 1 \\ & X(e^{jw}) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = 2\pi\delta(2w) = \pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi), \; \text{since} \; k\delta(kw)=\delta(w), \; \forall \; k\neq0 \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = \pi\delta(w) \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) = 2\pi\delta(w) \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = 1 \\ \end{align} \,\! $

$ \begin{align} \text{(d)} \quad & x[n] = \text{cos}\big(\frac{\pi}{4}n\big) \\ & X(e^{jw}) = \pi \Big[ \delta \big( w - \frac{\pi}{4} \big) + \delta \big( w + \frac{\pi}{4} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & Y(e^{jw}) = X(e^{j2w}) = \pi \Big[ \delta \big( 2w - \frac{\pi}{4} \big) + \delta \big( 2w + \frac{\pi}{4} \big) \Big] \\ & \quad\quad\quad = \pi \Big[ \delta \big( 2 (w - \frac{\pi}{8}) \big) + \delta \big( 2 (w + \frac{\pi}{8}) \big) \Big] = \frac{\pi}{2} \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & \quad\quad\quad\quad\quad \text{since} \; k\delta(kw)=\delta(w), \; \forall \; k\neq0 \\ & Z(e^{jw}) = Y(e^{jw}) \times 2\text{rect}\Big(\frac{w}{\pi}\Big) = \frac{\pi}{2} \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \bigg( 2\text{rect}\Big(\frac{w}{\pi}\Big) \bigg) \\ & \quad\quad\quad = \pi \Big[ \delta \big( w - \frac{\pi}{8} \big) + \delta \big( w + \frac{\pi}{8} \big) \Big] \;\; \text{for} \;\; w \in (-\pi,\pi) \\ & z[n] = \text{cos}\big(\frac{\pi}{8}n\big) \\ \end{align} \,\! $


Credit: Prof. Charles Bouman

Back to Lab Week 6 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett