(One intermediate revision by one other user not shown)
Line 39: Line 39:
 
c. Notice that
 
c. Notice that
  
<math>h[m,n]=
+
<math>\mathbf{h}[m,n]=
 
\begin{pmatrix}
 
\begin{pmatrix}
 
-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\
 
-\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\
Line 56: Line 56:
 
</math>
 
</math>
  
Therefore h[m,n] can be separated as outer product of two column vector given by
+
Therefore \mathbf{h}[m,n] can be separated as outer product of two column vector given by
  
<math>h[m,n]=h_1[m]h_2[n]^T</math>
+
<math>\mathbf{h}[m,n]=\mathbf{h}_1[m]\mathbf{h}_2[n]^T</math>
  
 
where  
 
where  
 
<math>
 
<math>
h_1[m]=
+
\mathbf{h}_1[m]=
 
\begin{pmatrix}
 
\begin{pmatrix}
 
\frac{1}{2} \\
 
\frac{1}{2} \\
Line 71: Line 71:
 
and
 
and
 
<math>
 
<math>
h_2[n]=
+
\mathbf{h}_2[n]=
 
\begin{pmatrix}
 
\begin{pmatrix}
 
-\frac{1}{4} \\
 
-\frac{1}{4} \\
Line 83: Line 83:
 
<math>H_1(u)=\frac{1}{2}e^{-ju(-1)}+e^{-ju(0)}+\frac{1}{2}e^{-ju(1)}</math>
 
<math>H_1(u)=\frac{1}{2}e^{-ju(-1)}+e^{-ju(0)}+\frac{1}{2}e^{-ju(1)}</math>
  
<math>H_2(v)=-\frac{1}{4}e^{-ju(-1)}+e^{-ju(0)}-\frac{1}{4}e^{-ju(1)}</math>
+
<math>H_2(v)=-\frac{1}{4}e^{-jv(-1)}+e^{-jv(0)}-\frac{1}{4}e^{-jv(1)}</math>
  
 
According to the Separability property of CSFT, we get
 
According to the Separability property of CSFT, we get
  
 
<math>H(u,v)=H_1(u)H_2(v)=(1-\frac{1}{2}cosu)(1+cosv)</math>
 
<math>H(u,v)=H_1(u)H_2(v)=(1-\frac{1}{2}cosu)(1+cosv)</math>
 +
 +
  
 
----
 
----

Latest revision as of 07:16, 30 November 2010



Solution to Q3 of Week 14 Quiz Pool


a. According to the table, we have

$ \begin{align} h[m,n]=&-\frac{1}{8}\delta [m+1,n-1]+\frac{1}{2}\delta [m,n-1]-\frac{1}{8}\delta [m-1,n-1] \\ &-\frac{1}{4}\delta [m+1,n]+\delta [m,n]-\frac{1}{4}\delta [m,n-1] \\ &-\frac{1}{8}\delta [m+1,n+1]+\frac{1}{2}\delta [m,n+1]-\frac{1}{8}\delta [m-1,n+1] \end{align} $

Replace $ \delta [m,n] $ with general input signal $ x[m,n] $ we get the difference equation of the filter.

$ \begin{align} y[m,n]=&-\frac{1}{8}x[m+1,n-1]+\frac{1}{2}x[m,n-1]-\frac{1}{8}x[m-1,n-1] \\ &-\frac{1}{4}x[m+1,n]+x[m,n]-\frac{1}{4}x[m,n-1] \\ &-\frac{1}{8}x[m+1,n+1]+\frac{1}{2}x[m,n+1]-\frac{1}{8}x[m-1,n+1] \end{align} $

b. Place the center of filter (i.e. where m=0,n=0) upon the pixel of image. Multiply h[m,n] with x[m,n] of the correspondent position and sum the value. We can get

$ \begin{align} y[0,0]=&0*h[-1,1]+0*h[0,1]+0*h[1,1]+ \\ &0*h[-1,0]+1*h[0,0]+0*h[1,0] \\ &1*h[-1,-1]+1*h[0,-1]+1*h[1,-1] \\ =&1-\frac{1}{8}+\frac{1}{2}-\frac{1}{8} \\ =&\frac{5}{4} \end{align} $

c. Notice that

$ \mathbf{h}[m,n]= \begin{pmatrix} -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \\ -\frac{1}{4} & 1 & -\frac{1}{4} \\ -\frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{1}{4} & 1 & -\frac{1}{4} \end{pmatrix} $

Therefore \mathbf{h}[m,n] can be separated as outer product of two column vector given by

$ \mathbf{h}[m,n]=\mathbf{h}_1[m]\mathbf{h}_2[n]^T $

where $ \mathbf{h}_1[m]= \begin{pmatrix} \frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} $ and $ \mathbf{h}_2[n]= \begin{pmatrix} -\frac{1}{4} \\ 1 \\ -\frac{1}{4} \end{pmatrix} $

Then compute the CTFT of $ h_1,h_2 $ we get

$ H_1(u)=\frac{1}{2}e^{-ju(-1)}+e^{-ju(0)}+\frac{1}{2}e^{-ju(1)} $

$ H_2(v)=-\frac{1}{4}e^{-jv(-1)}+e^{-jv(0)}-\frac{1}{4}e^{-jv(1)} $

According to the Separability property of CSFT, we get

$ H(u,v)=H_1(u)H_2(v)=(1-\frac{1}{2}cosu)(1+cosv) $



Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal