Revision as of 12:46, 28 November 2010 by Sbiddand (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Q2 of Week 14 Quiz Pool


$ y(m,n) = x(m,n) + \lambda \left( x(m,n) - \frac{1}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}x(m-k,n-l) \right) $

a. Yes, the system is linear and space invariant.
b.
$ \begin{align} h(m,n) &= \delta(m,n) + \lambda \delta(m,n) - \frac{\lambda}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta(m-k,n-l) \\ &= (1 + \lambda) \delta(m,n) - \frac{\lambda}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta(m-k,n-l) \\ \\ h(m,n) &= \begin{cases} 1+\lambda-\frac{\lambda}{9} & m=0,n=0 \\ -\frac{\lambda}{9} & -1 < m \le 1, -1 < n \le 1, m \ne 0, n \ne 0\\ 0 & \mbox{otherwise} \end{cases} \end{align} $

c. Taking CSFT on both sides,
$ \begin{align} H(u,v) &= (1 + \lambda) - \frac{\lambda}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}e^{-j2\pi u k}e^{-j2\pi v l} \\ &= (1 + \lambda) - \frac{\lambda}{9} \left( \sum_{k=-1}^{1}e^{-j2\pi u k} \right) \left( \sum_{l=-1}^{1}e^{-j2\pi v l} \right) \\ &= (1 + \lambda) - \frac{\lambda}{9} \left( e^{j2\pi u} + 1 + e^{-j2\pi u} \right) \left( e^{j2\pi v} + 1 + e^{-j2\pi v} \right) \\ &= (1 + \lambda) - \frac{\lambda}{9} \left( 1 + 2cos(2\pi u) \right) \left( 1 + 2cos(2\pi v) \right) \\ \end{align} $

d. For large values of $ \lambda $, the filter performs sharpening.
e. For -1 < $ \lambda $ < 0, the filter performs blurring.

Credit: Prof. Bouman


Back to Lab Week 14 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett