(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q3 of Week 13 Quiz Pool == ---- a) <math>x[n]=\delta[n]\,\!</math> Using the N-point DFT formula, <math> X[k]=\sum_{n=0}^{N-...)
 
 
(2 intermediate revisions by the same user not shown)
Line 27: Line 27:
 
<math>x_N[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k] e^{j\frac{2\pi}{N}nk}</math>
 
<math>x_N[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k] e^{j\frac{2\pi}{N}nk}</math>
  
then, you will notice that <math>y_N[n]=x_N[(n-1)\text{mod}N] + x_N[(n-2)\text{mod}N] + x_N[(n-3)\text{mod}N]</math>. Thus, it becomes
+
then, you will notice that <math>y[n]=x_N[(n-1)\text{mod}N] + x_N[(n-2)\text{mod}N] + x_N[(n-3)\text{mod}N]</math>. Thus, it becomes
  
 
<math>y[n]=\delta[n-1]+\delta[n-2]+\delta[n-3] \quad n=0,1,2,...,N-1\,\!</math> and it is periodic with <math>N</math>.
 
<math>y[n]=\delta[n-1]+\delta[n-2]+\delta[n-3] \quad n=0,1,2,...,N-1\,\!</math> and it is periodic with <math>N</math>.
  
(Producting <math>W^{k}</math> to <math>X[k]</math> yields circular-shifting to the right by 1 in the periodic discrete-time signal)
+
(Producting <math>W_N^{k}</math> to <math>X[k]</math> yields circular-shifting to the right by 1 in the periodic discrete-time signal)
  
  
Line 45: Line 45:
 
                           & +\!  \{\quad 3,\quad 0,\quad 0,\quad 3, \quad 3\} \\
 
                           & +\!  \{\quad 3,\quad 0,\quad 0,\quad 3, \quad 3\} \\
 
                         =& \quad \{\quad 3,\quad 1,\quad 3,\quad 6, \quad 5\} \\
 
                         =& \quad \{\quad 3,\quad 1,\quad 3,\quad 6, \quad 5\} \\
                         =& 3\delta[n]+1\delta[n-1]+3\delta[n-2]+6\delta[n-3]+5\delta[n-4] \\ \end{align}</math>
+
                         =& 3\delta[n]+\delta[n-1]+3\delta[n-2]+6\delta[n-3]+5\delta[n-4] \\ \end{align}</math>
  
 
----
 
----

Latest revision as of 12:08, 17 November 2010



Solution to Q3 of Week 13 Quiz Pool


a)

$ x[n]=\delta[n]\,\! $

Using the N-point DFT formula,

$ X[k]=\sum_{n=0}^{N-1}\delta[n]e^{-j\frac{2\pi}{N}kn} = 1 $


b)

We use the N-point inverse-DFT formula to obtain $ y[n] $

$ \begin{align} y[n] & =\frac{1}{N}\sum_{k=0}^{N-1} \left( W_N^{k} + W_N^{2k} + W_N^{3k} \right) X[k] e^{j\frac{2\pi}{N}nk} \\ & =\frac{1}{N}\sum_{k=0}^{N-1} W_N^{k}X[k] e^{j\frac{2\pi}{N}nk} + \frac{1}{N}\sum_{k=0}^{N-1} W_N^{2k}X[k] e^{j\frac{2\pi}{N}nk} + \frac{1}{N}\sum_{k=0}^{N-1} W_N^{3k}X[k] e^{j\frac{2\pi}{N}nk} \\ & =\frac{1}{N}\sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}(n-1)k} + \frac{1}{N}\sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}(n-2)k} + \frac{1}{N}\sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}(n-3)k} \quad \text{where} \;\; W_N=e^{-j\frac{2\pi}{N}} \\ \end{align} $

If you compare this with the N-point inverse-DFT of $ X[k] $

$ x_N[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k] e^{j\frac{2\pi}{N}nk} $

then, you will notice that $ y[n]=x_N[(n-1)\text{mod}N] + x_N[(n-2)\text{mod}N] + x_N[(n-3)\text{mod}N] $. Thus, it becomes

$ y[n]=\delta[n-1]+\delta[n-2]+\delta[n-3] \quad n=0,1,2,...,N-1\,\! $ and it is periodic with $ N $.

(Producting $ W_N^{k} $ to $ X[k] $ yields circular-shifting to the right by 1 in the periodic discrete-time signal)


c)

Let fix $ N=5 $ and $ h[n]=\delta[n]+2\delta[n-1]+3\delta[n-2] $

computing 5-point circular convolution with $ y[n] $ and $ h[n] $,

$ \begin{align} z[n] =& y[n]\circledast_5 h[n] \\ =& \quad \{\quad 0,\quad 1,\quad 1,\quad 1, \quad 0\} \\ & +\! \{\quad 0,\quad 0,\quad 2,\quad 2, \quad 2\} \\ & +\! \{\quad 3,\quad 0,\quad 0,\quad 3, \quad 3\} \\ =& \quad \{\quad 3,\quad 1,\quad 3,\quad 6, \quad 5\} \\ =& 3\delta[n]+\delta[n-1]+3\delta[n-2]+6\delta[n-3]+5\delta[n-4] \\ \end{align} $


Back to Lab Week 13 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood