Line 11: Line 11:
 
Q2. Consider the discrete-time signal
 
Q2. Consider the discrete-time signal
  
<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
+
:<math>x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
  
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
Line 17: Line 17:
 
b) Using your result from part a), compute  
 
b) Using your result from part a), compute  
  
<math>x[n]* y[n]</math>.
+
:<math>x[n]* y[n]</math>.
  
 
c) Consider the discrete-time signal  
 
c) Consider the discrete-time signal  
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
Obtain the 4-point circular convolution of x[n] and z[n].
 
Obtain the 4-point circular convolution of x[n] and z[n].
Line 27: Line 27:
 
d) When computing the N-point circular convolution of x[n] and the signal
 
d) When computing the N-point circular convolution of x[n] and the signal
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
Line 33: Line 33:
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
----
 
----
Q3.  
+
Q3. Consider the discrete-time signal
 +
 
 +
:<math>x[n]=\delta[n]</math>
 +
 
 +
a) Obtain the N-point DFT X[k] of x[n].
 +
 
 +
b) Obtain the signal y[n] whose DFT is <math> (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k]</math>.
 +
 
 +
c) Now fix <math>N=4</math>. Compute 4-point circular convolution between x[n] and the signal
 +
 
 +
:<math>h[n]=\delta[n]+\delta[n-1]+\delta[n-2].</math>
  
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].

Revision as of 11:41, 17 November 2010


Quiz Questions Pool for Week 13

  • Under construction --Zhao

Q1. Show that the DTFT of time-reversal, $ x[-n]\,\! $, is $ X(-\omega)\,\! $


Q2. Consider the discrete-time signal

$ x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $

a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].

b) Using your result from part a), compute

$ x[n]* y[n] $.

c) Consider the discrete-time signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.

Obtain the 4-point circular convolution of x[n] and z[n].

d) When computing the N-point circular convolution of x[n] and the signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.

how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?

  • Same as HW8 Q3 available here.

Q3. Consider the discrete-time signal

$ x[n]=\delta[n] $

a) Obtain the N-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k] $.

c) Now fix $ N=4 $. Compute 4-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood