Revision as of 18:36, 27 October 2010 by Zhao148 (Talk | contribs)

ECE438 Lab Week10 Quiz Question 4 Solution

a. By computing X(z) and Y(z), we can obtain H(z)=Y(z)/X(z)

$ \begin{align} X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}&=\sum_{n=-\infty}^{\infty}(\frac{1}{2})^nu[n]z^{-n}+\sum_{n=-\infty}^{\infty}2^nu[-n-1]z^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=-\infty}^{-1}2^nz^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=1}^{\infty}2^{-n}z^{n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=0}^{\infty}2^{-n}z^{n}-1 \\ &=\frac{1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1-\frac{z}{2}}-1\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|<2 \\ &=\frac{\frac{3}{4}z^{-1}}{(1-\frac{1}{2}z^{-1})(z^{-1}-\frac{1}{2})}\text{ ,ROC: }\frac{1}{2}<|z|<2 \end{align} $

$ \begin{align} Y(z)=\sum_{n=-\infty}^{\infty}y[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{4})^nu[n]z^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{4}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{4} \\ &=\frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{4}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{4} \end{align} $

Thus

$ H(z)=\frac{Y(z)}{X(z)}=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}\text{ ,ROC: }\frac{3}{4}<|Z|<2 $

b. By computing the inverse Z transform of H(z), we can obtain the impulse response h[n]

$ H(z)=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}=\frac{1}{1-\frac{3}{4}z^{-1}}-2*\frac{z^{-1}}{1-\frac{3}{4}z^{-1}} $

Given the ROC of $ \frac{3}{4}<|Z|<2 $, the z inverse transform of $ \frac{1}{1-\frac{3}{4}z^{-1}} $ can be obtained as $ (\frac{3}{4})^nu[n] $

using time shifting property of Z transform we can get

$ h[n]=(\frac{3}{4})^nu[n]-2(\frac{3}{4})^{n-1}u[n-1] $

c. According to Question a

$ Y(z)(1-\frac{3}{4}z^{-1})=X(z)(1-2z^{-1}) $

Applying z inverse transform to both sides we obtain the difference equation

$ y[n]-\frac{3}{4}y[n-1]=x[n]-2x[n-1] $

d. Filter represented by this difference equation is IIR. Because the transfer function has one pole that is not cancelled out by any zero.

e. TBA


Back to Quiz Pool

Back to Lab wiki

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang