Line 47: Line 47:
 
<math>y[n]-\frac{3}{4}y[n-1]=x[n]-2x[n-1]</math>
 
<math>y[n]-\frac{3}{4}y[n-1]=x[n]-2x[n-1]</math>
  
d.
+
d. Filter represented by this difference equation is IIR.
 +
 
 +
e. TBA
 
----
 
----
 
[[ECE438_Week10_Quiz|Back to Quiz Pool]]
 
[[ECE438_Week10_Quiz|Back to Quiz Pool]]
  
 
[[ECE438_Lab_Fall_2010|Back to Lab wiki]]
 
[[ECE438_Lab_Fall_2010|Back to Lab wiki]]

Revision as of 18:35, 27 October 2010

ECE438 Lab Week10 Quiz Question 4 Solution

a. By computing X(z) and Y(z), we can obtain H(z)=Y(z)/X(z)

$ \begin{align} X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}&=\sum_{n=-\infty}^{\infty}(\frac{1}{2})^nu[n]z^{-n}+\sum_{n=-\infty}^{\infty}2^nu[-n-1]z^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=-\infty}^{-1}2^nz^{-n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=1}^{\infty}2^{-n}z^{n} \\ &=\sum_{n=0}^{\infty}(\frac{1}{2})^nz^{-n}+\sum_{n=0}^{\infty}2^{-n}z^{n}-1 \\ &=\frac{1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1-\frac{z}{2}}-1\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|<2 \\ &=\frac{\frac{3}{4}z^{-1}}{(1-\frac{1}{2}z^{-1})(z^{-1}-\frac{1}{2})}\text{ ,ROC: }\frac{1}{2}<|z|<2 \end{align} $

$ \begin{align} Y(z)=\sum_{n=-\infty}^{\infty}y[n]z^{-n}&=\sum_{n=-\infty}^{\infty}6(\frac{1}{2})^nu[n]z^{-n}-\sum_{n=-\infty}^{\infty}6(\frac{3}{4})^nu[n]z^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\sum_{n=0}^{\infty}6(\frac{1}{2})^nz^{-n}-\sum_{n=0}^{\infty}6(\frac{3}{4})^nz^{-n} \\ &=\frac{6}{1-\frac{1}{2}z^{-1}}-\frac{6}{1-\frac{3}{4}z^{-1}}\text{ ,if }|z|>\frac{1}{2}\text{ and }|z|>\frac{3}{4} \\ &=\frac{-\frac{3}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{3}{4}z^{-1})}\text{ ,ROC: }|z|>\frac{3}{4} \end{align} $

Thus

$ H(z)=\frac{Y(z)}{X(z)}=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}\text{ ,ROC: }\frac{3}{4}<|Z|<2 $

b. By computing the inverse Z transform of H(z), we can obtain the impulse response h[n]

$ H(z)=\frac{1-2z^{-1}}{1-\frac{3}{4}z^{-1}}=\frac{1}{1-\frac{3}{4}z^{-1}}-2*\frac{z^{-1}}{1-\frac{3}{4}z^{-1}} $

Given the ROC of $ \frac{3}{4}<|Z|<2 $, the z inverse transform of $ \frac{1}{1-\frac{3}{4}z^{-1}} $ can be obtained as $ (\frac{3}{4})^nu[n] $

using time shifting property of Z transform we can get

$ h[n]=(\frac{3}{4})^nu[n]-2(\frac{3}{4})^{n-1}u[n-1] $

c. According to Question a

$ Y(z)(1-\frac{3}{4}z^{-1})=X(z)(1-2z^{-1}) $

Applying z inverse transform to both sides we obtain the difference equation

$ y[n]-\frac{3}{4}y[n-1]=x[n]-2x[n-1] $

d. Filter represented by this difference equation is IIR.

e. TBA


Back to Quiz Pool

Back to Lab wiki

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett