(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q2 of Week 10 Quiz Pool == ---- Using the DTFT formula, let assume that <math>H(w)</math> is the frequency response of <math>h[n...)
 
 
Line 5: Line 5:
 
----
 
----
  
Using the DTFT formula, let assume that <math>H(w)</math> is the frequency response of <math>h[n]</math> such that
+
Using the DTFT formula, let assume that <math>X(w)</math> is the frequency response of <math>x[n]</math> such that
<math> H(w) = \sum_{n=-\infty}^{\infty} h[n] e^{-jwn} </math>.
+
<math> X(w) = \sum_{n=-\infty}^{\infty} x[n] e^{-jwn} </math>.
  
Then, what is the DTFT of <math>h^{\ast}[n]</math> ?
+
Then, what is the DTFT of <math>x^{\ast}[n]</math> ?
  
 
----
 
----
  
Start with <math>H(w) = \sum_{n=-\infty}^{\infty} h[n] e^{-jwn} </math>.
+
Start with <math>X(w) = \sum_{n=-\infty}^{\infty} x[n] e^{-jwn} </math>.
  
 
If we apply conjucation to both sides,
 
If we apply conjucation to both sides,
  
 
then, <math>\begin{align}
 
then, <math>\begin{align}
H^{\ast}(w) & = \sum_{n=-\infty}^{\infty} h^{\ast}[n] (e^{-jwn})^{\ast}  \\
+
X^{\ast}(w) & = \sum_{n=-\infty}^{\infty} x^{\ast}[n] (e^{-jwn})^{\ast}  \\
& = \sum_{n=-\infty}^{\infty} h^{\ast}[n] e^{jwn} \\
+
& = \sum_{n=-\infty}^{\infty} x^{\ast}[n] e^{jwn} \\
 
\end{align}</math>.
 
\end{align}</math>.
  
Changing the variable (<math>w'=-w</math>) to make the right-side as DTFT formula of <math>h^{\ast}[n]</math>,  
+
Changing the variable (<math>w'=-w</math>) to make the right-side as DTFT formula of <math>x^{\ast}[n]</math>,  
  
then <math> H^{\ast}(-w') = \sum_{n=-\infty}^{\infty} h^{\ast}[n] e^{-jw'n} </math>.
+
then <math> X^{\ast}(-w') = \sum_{n=-\infty}^{\infty} x^{\ast}[n] e^{-jw'n} </math>.
  
This implies that the frequency response of <math>h^{\ast}[n]</math> is <math>H^{\ast}(-w)</math>.
+
This implies that the frequency response of <math>x^{\ast}[n]</math> is <math>X^{\ast}(-w)</math>.
  
Since <math>h[n]=h^{\ast}[n]</math>, thus <math>H(w)=H^{\ast}(-w)</math>, which put some constraints on the magnitude and phase reponse of <math>H(w)</math>.
+
Since <math>x[n]=x^{\ast}[n]</math>, thus <math>X(w)=X^{\ast}(-w)</math>, which put some constraints on the magnitude and phase reponse of <math>X(w)</math>.
  
That is, the magnitude response must be even <math>|H(w)|=|H(-w)|\,\!</math>,  
+
That is, the magnitude response must be even <math>|X(w)|=|X(-w)|\,\!</math>,  
  
and the phase reponse must be odd <math>\angle H(w) = - \angle H(-w)</math>.
+
and the phase reponse must be odd <math>\angle X(w) = - \angle X(-w)</math>.
  
 
----
 
----

Latest revision as of 19:04, 26 October 2010



Solution to Q2 of Week 10 Quiz Pool


Using the DTFT formula, let assume that $ X(w) $ is the frequency response of $ x[n] $ such that $ X(w) = \sum_{n=-\infty}^{\infty} x[n] e^{-jwn} $.

Then, what is the DTFT of $ x^{\ast}[n] $ ?


Start with $ X(w) = \sum_{n=-\infty}^{\infty} x[n] e^{-jwn} $.

If we apply conjucation to both sides,

then, $ \begin{align} X^{\ast}(w) & = \sum_{n=-\infty}^{\infty} x^{\ast}[n] (e^{-jwn})^{\ast} \\ & = \sum_{n=-\infty}^{\infty} x^{\ast}[n] e^{jwn} \\ \end{align} $.

Changing the variable ($ w'=-w $) to make the right-side as DTFT formula of $ x^{\ast}[n] $,

then $ X^{\ast}(-w') = \sum_{n=-\infty}^{\infty} x^{\ast}[n] e^{-jw'n} $.

This implies that the frequency response of $ x^{\ast}[n] $ is $ X^{\ast}(-w) $.

Since $ x[n]=x^{\ast}[n] $, thus $ X(w)=X^{\ast}(-w) $, which put some constraints on the magnitude and phase reponse of $ X(w) $.

That is, the magnitude response must be even $ |X(w)|=|X(-w)|\,\! $,

and the phase reponse must be odd $ \angle X(w) = - \angle X(-w) $.


Back to Lab Week 10 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch