(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to HW7 == ---- Q1. <br/> Recall, the Discrete Fourier Transform is defined as follows - Definition: let x[n] be a DT signal with ...)
 
 
(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:2010 Fall ECE 438 Boutin]]
+
<br>
  
 
----
 
----
== Solution to HW7 ==
+
 
 +
== Solution to [[Hw7ECE438F10|HW7]]  ==
 +
 
 
----
 
----
  
Q1. <br/>
+
Q1. <br>  
  
Recall, the Discrete Fourier Transform is defined as follows -
+
Recall, the Discrete Fourier Transform is defined as follows -  
  
Definition: let x[n] be a DT signal with Period N. Then,
+
Definition: let x[n] be a DT signal with Period N. Then,  
+
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j2\pi kn/N}</math>
+
  
<math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{j2\pi kn/N}</math>
+
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j2\pi kn/N}</math>
 +
 
 +
<math> x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{j2\pi kn/N}</math>  
 +
 
 +
<br> What is the relation between the DFT and the Fourier series coefficients of continuous periodic function x[n]? <br> The DFT of a sampled signal x[n] of length N is directly proportional to the Fourier series coefficients of the continuous periodic version of x[n]. <br> The DFT of the N samples comprising one period of x[n] equals N times the Fourier series coefficients.
 +
 
 +
Alternatively - <br> The fourier series coefficients of a periodic, bandlimited signal x are given by the DFT of one period of the samples of x, divided by N, where N is the DFT length and N is also the number of samples in each period of x.
 +
 
 +
Credit: Julius Smith III, stanford.edu
  
 
----
 
----
 +
 
<math>x_1[n]= e^{j \frac{2}{3} \pi n};</math>  
 
<math>x_1[n]= e^{j \frac{2}{3} \pi n};</math>  
  
Function's period N = 3, <br/>
+
Function's period N = 3, <br> Using IDFT, <br> <math>\begin{align}
Using IDFT, <br/>
+
x_1[n] &=  \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
<math>
+
\begin{align}
+
x[n] &=  \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
+
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
  &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi (2/3)} \right]  \\
+
  &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi n(2/3)} \right]  \\
  &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi /3} \right]  
+
  &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi n/3} \right]  
\end{align}
+
\end{align}</math>  
</math>
+
  
For the two sides to be equal, <br/>
+
For the two sides to be equal, <br> X[0] = 0 <br> X[1] = 3 <br> X[2] = 0 <br>  
X[0] = 0 <br/>
+
X[1] = 3 <br/>
+
X[2] = 0 <br/>
+
  
Plugging in we can verify, <br/>
+
Plugging in we can verify, <br> <math>\begin{align}
<math>
+
\begin{align}
+
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \left[ 0 + 3.e^{j2\pi n/3} + 0 \right]\\  
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \left[ 0 + 3.e^{j2\pi n/3} + 0 \right]\\  
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} 3.e^{j2\pi n/3} \\
 
e^{j \frac{2}{3} \pi n} &= \frac{1}{3} 3.e^{j2\pi n/3} \\
 
e^{j \frac{2}{3} \pi n} &= e^{j \frac{2}{3} \pi n}  
 
e^{j \frac{2}{3} \pi n} &= e^{j \frac{2}{3} \pi n}  
\end{align}
+
\end{align}</math>  
</math>
+
  
So our three selected values for X[k] are correct. Thus <br/>
+
So our three selected values for X[k] are correct. Thus <br> <math>X[k] = \begin{cases}  
<math>
+
X[k] = \begin{cases}  
+
 
3, & k = 1 \\
 
3, & k = 1 \\
 
0, & \mbox{else}  
 
0, & \mbox{else}  
\end{cases}
+
\end{cases}</math>  
</math>
+
 
 +
----
  
---- 
+
<math>x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n};</math>
  
<math>x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n};</math>
+
Function x2[n] is aperiodic. Let's see why - <br> Assume x2[n] is periodic, then <br> <math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi (n + N)}</math> for function to be periodic, where N is an integer <br> <math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}e^{j \frac{2}{\sqrt{3}} \pi N}</math> <br> <math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}.(1)</math> <br> <math>e^{j \frac{2}{\sqrt{3}} \pi N} = 1</math> <br> For this to be true - <br> <math>j \frac{2}{\sqrt{3}} \pi N = j 2\pi n,</math> where n is an integer<br> <math>N = n\sqrt{3}</math> <br> N is not an integer and this contradicts our assumption, proving that it cannot be true.<br> Thus, x_2[n] is aperiodic and we cannot apply the DFT. <br>  
  
Function x2[n] is aperiodic. Let's see why - <br/>
 
Assume x2[n] is periodic, then <br/>
 
<math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi (n + N)}</math> for function to be periodic, where N is an integer <br/>
 
<math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}e^{j \frac{2}{\sqrt{3}} \pi N}</math> <br/>
 
<math>e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}.(1)</math> <br/>
 
<math>e^{j \frac{2}{\sqrt{3}} \pi N} = 1</math> <br/>
 
For this to be true -  <br/>
 
<math>j \frac{2}{\sqrt{3}} \pi N = j 2\pi n,</math>  where n is an integer<br/>
 
<math>N = n\sqrt{3}</math> <br/>
 
N is not an integer and this contradicts our assumption proving that it cannot be true.<br/>
 
Thus, the x_2[n] is aperiodic and we cannot apply the DFT. <br/>
 
 
----
 
----
  
 
<math>x_3[n]= e^{j \frac{4}{3} \pi n};</math>  
 
<math>x_3[n]= e^{j \frac{4}{3} \pi n};</math>  
  
Function's period N = 3, <br/>
+
Function's period N = 3, <br> Using IDFT, <br> <math>\begin{align}
Using IDFT, <br/>
+
x_3[n] &=  \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
<math>
+
\begin{align}
+
x[n] &=  \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
+
 
e^{j \frac{4}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
 
e^{j \frac{4}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\
 
  &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi n(2/3)} \right]  \\
 
  &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi n(2/3)} \right]  \\
 
  &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi n/3} \right]  
 
  &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi n/3} \right]  
\end{align}
+
\end{align}</math>  
</math>
+
  
For the two sides to be equal, <br/>
+
For the two sides to be equal, <br> X[0] = 0 <br> X[1] = 0 <br> X[2] = 3 <br>  
X[0] = 0 <br/>
+
X[1] = 0 <br/>
+
X[2] = 3 <br/>
+
  
<math>
+
<math>X[k] = \begin{cases}  
X[k] = \begin{cases}  
+
 
3, & k = 2 \\
 
3, & k = 2 \\
 
0, & \mbox{else}  
 
0, & \mbox{else}  
\end{cases}
+
\end{cases}</math>  
</math>
+
 
 
----
 
----
<math>x_4[n]= e^{j \frac{2}{1000} \pi n};</math>
+
 
Function's period N = 1000, <br/>
+
<math>x_4[n]= e^{j \frac{2}{1000} \pi n};</math> Function's period N = 1000, <br> Using IDFT, <br> <math>\begin{align}
Using IDFT, <br/>
+
x_4[n] &=  \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
<math>
+
\begin{align}
+
x[n] &=  \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
+
 
e^{j \frac{2}{1000} \pi n} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
 
e^{j \frac{2}{1000} \pi n} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
 
  &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)} + ... \right]  \\
 
  &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)} + ... \right]  \\
 
  &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j4\pi n/1000} + ... \right]  
 
  &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j4\pi n/1000} + ... \right]  
\end{align}
+
\end{align}</math>  
</math>
+
  
For the two sides to be equal, <br/>
+
For the two sides to be equal, <br> X[0] = 0 <br> X[1] = 1000 <br> X[2] = 0 <br>  
X[0] = 0 <br/>
+
X[1] = 1000 <br/>
+
X[2] = 0 <br/>
+
  
<math>
+
<math>X[k] = \begin{cases}  
X[k] = \begin{cases}  
+
 
1000, & k = 1 \\
 
1000, & k = 1 \\
 
0, & \mbox{else}  
 
0, & \mbox{else}  
\end{cases}
+
\end{cases}</math>  
</math>
+
 
 
----
 
----
  
<math>x_5[n]= e^{-j \frac{2}{1000} \pi n};</math>
+
<math>x_5[n]= e^{-j \frac{2}{1000} \pi n};</math> Function's period N = 1000, <br> <math>\begin{align}
Function's period N = 1000, <br/>
+
<math>
+
\begin{align}
+
 
x_5[n]&= e^{-j \frac{2}{1000} \pi n}.1 \\
 
x_5[n]&= e^{-j \frac{2}{1000} \pi n}.1 \\
 
&= e^{-j \frac{2}{1000} \pi n}.e^{-j 2\pi n} \\
 
&= e^{-j \frac{2}{1000} \pi n}.e^{-j 2\pi n} \\
 
&= e^{j 2\pi n(1 - (1/1000))} \\
 
&= e^{j 2\pi n(1 - (1/1000))} \\
 
&= e^{j 2\pi n\frac{999}{1000} } \\
 
&= e^{j 2\pi n\frac{999}{1000} } \\
\end{align}
+
\end{align}</math>  
</math>
+
  
Using IDFT, <br/>
+
Using IDFT, <br> <math>\begin{align}
<math>
+
x_5[n] &=  \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
\begin{align}
+
x[n] &=  \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/3} \\
+
 
e^{j 2\pi n\frac{999}{1000}} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
 
e^{j 2\pi n\frac{999}{1000}} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
  &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)}+ ... + X[999].e^{j2\pi (999/1000)} \right]  \\
+
  &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)}+ ... + X[999].e^{j2\pi n(999/1000)} \right]  \\
  &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n (2/1000)} + ... + X[999].e^{j2\pi (999/1000)} \right] \\
+
  &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n (2/1000)} + ... + X[999].e^{j2\pi n(999/1000)} \right] \\
\end{align}
+
\end{align}</math>  
</math>
+
  
For the two sides to be equal, <br/>
+
For the two sides to be equal, <br> X[0] = 0 <br> X[1] = 0 <br> X[2] = 0 <br> X[999] = 1000 <br>  
X[0] = 0 <br/>
+
X[1] = 0 <br/>
+
X[2] = 0 <br/>
+
X[999] = 1000 <br/>
+
  
<math>
+
<math>X[k] = \begin{cases}  
X[k] = \begin{cases}  
+
 
1000, & k = 999 \\
 
1000, & k = 999 \\
 
0, & \mbox{else}  
 
0, & \mbox{else}  
\end{cases}
+
\end{cases}</math>
 +
 
 +
----
 +
 
 +
<math>\begin{align}
 +
x_6[n] &= \cos\left( \frac{2}{1000} \pi n\right) \\
 +
&= \frac{1}{2}\left( e^{j\frac{2\pi n}{1000}} + e^{-j\frac{2\pi n}{1000}} \right) \\
 +
&= \frac{1}{2} (x_4[n] + x_5[n]) \\
 +
\end{align}</math>
 +
 
 +
We have an additional (1/2) to factor into the final coefficients, giving us - <br> <math>X[k] = \begin{cases}
 +
500, & k = 1 \\
 +
500, & k = 999 \\
 +
0, & \mbox{else}
 +
\end{cases}</math>
 +
 
 +
----
 +
 
 +
<math>\begin{align}
 +
x_7[n] &= \cos^2\left( \frac{2}{1000} \pi n\right) \\
 +
&= \left[ \frac{1}{2}\left( e^{j\frac{2\pi n}{1000}} + e^{-j\frac{2\pi n}{1000}} \right)\right]^2 \\
 +
&= \frac{1}{4}\left( e^{j\frac{4\pi n}{1000}} + 2 + e^{-j\frac{4\pi n}{1000}} \right) \\
 +
&= \frac{1}{4}\left( 2 + e^{j2\pi n\frac{2}{1000}} +  e^{-j2\pi n\frac{2}{1000}}e^{-j2\pi n} \right) \\
 +
&= \frac{1}{4}\left( 2 + e^{j2\pi n\frac{2}{1000}} +  e^{j2\pi n\frac{998}{1000}} \right) \\
 +
\end{align}</math>
 +
 
 +
Function's period N = 1000, <br> Using IDFT, <br> <math>\begin{align}
 +
x_7[n] &=  \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\
 +
&= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)} + ... X[998].e^{j2\pi n(998/1000)} + X[999].e^{j2\pi n(999/1000)} \right] \\
 +
\end{align}</math>
 +
 
 +
Comparing LHS and RHS, <br> X[0] = 500 <br> X[1] = 0 <br> X[2] = 250 <br> ... <br> X[998] = 250 <br> X[999] = 0 <br>
 +
 
 +
<math>X[k] = \begin{cases}
 +
500, & k = 0 \\
 +
250, & k = 2 \\
 +
250, & k = 998 \\
 +
0, & \mbox{else}
 +
\end{cases}</math>
 +
 
 +
----
 +
 
 +
<math>\begin{align}
 +
x_8[n]= (-j)^n \\
 +
&= (e^{-j \pi /2})^n \\
 +
&= e^{-j \pi n/2} \\
 +
&= e^{-j \pi n/2}e^{j 2\pi} \\
 +
&= e^{j 2\pi (3n/4)} \\
 +
 
 +
\end{align}</math>
 +
 
 +
Function's period N = 4, <br> Using IDFT, <br> <math>\begin{align}
 +
x_8[n] &=  \frac{1}{4} \sum_{k=0}^{3} X[k].e^{j2\pi kn/4} \\
 +
e^{j 2\pi (3n/4)} &= \frac{1}{4} \sum_{k=0}^{3} X[k].e^{j2\pi kn/4} \\
 +
&= \frac{1}{4} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/4} + X[2].e^{j2\pi n(2/4)} + X[3].e^{j2\pi n(3/4)}\right]  \\
 +
&= \frac{1}{4} \left[ X[0] + X[1].e^{j\pi n/2} + X[2].e^{j\pi n} + X[3].e^{j\pi n(3/2)} \right]
 +
\end{align}</math>
 +
 
 +
For the two sides to be equal, <br> X[0] = 0 <br> X[1] = 0 <br> X[2] = 0 <br> X[3] = 4 <br>
 +
 
 +
<math>X[k] = \begin{cases}
 +
4, & k = 3 \\
 +
0, & \mbox{else}
 +
\end{cases}</math>
 +
 
 +
----
 +
 
 +
Q2.
 +
 
 +
<math>y_1[n]= \frac{x[n]+x[n-1]}{2} </math><br>
 +
 
 +
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br/>
 +
 
 +
<math>\begin{align}
 +
Y_1[z]&= \frac{X[z]+X[z].z^{-1}}{2} \\
 +
\frac{Y_1[z]}{X[z]}&= \frac{1+z^{-1}}{2} \\
 +
H_1[z] &= \frac{1+z^{-1}}{2} \\
 +
\end{align}</math>
 +
 
 +
Frequency Response H_1(<span class="texhtml">ω</span>),<br> <math>\begin{align}
 +
H_1[e^{j\omega }] &= \frac{1+e^{-j\omega }}{2} \\
 +
&= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}+e^{-j\frac{\omega }{2}}}{2} \right) \\
 +
&= e^{-j\frac{\omega }{2}} cos \left( \frac{\omega }{2} \right) \\
 +
\end{align}</math>
 +
 
 +
----
 +
 
 +
<math>y_2[n]= \frac{x[n]-x[n-1]}{2}</math>
 +
 
 +
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br>
 +
 
 +
<math>\begin{align}
 +
Y_2[z]&= \frac{X[z]-X[z].z^{-1}}{2} \\
 +
\frac{Y_2[z]}{X[z]}&= \frac{1-z^{-1}}{2} \\
 +
H_2[z] &= \frac{1-z^{-1}}{2} \\
 +
\end{align}</math>
 +
 
 +
Frequency Response H_2(<span class="texhtml">ω</span>),<br> <math>\begin{align}
 +
H_2[e^{j\omega }] &= \frac{1-e^{-j\omega }}{2} \\
 +
&= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2} \right) \\
 +
&= je^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2j} \right) \\
 +
&= je^{-j\frac{\omega }{2}} sin \left( \frac{\omega }{2} \right) \\
 +
\end{align}</math>
 +
 
 +
----
 +
 
 +
<math>y_3[n]= \frac{x[n+1]+x[n]+x[n-1]}{3} </math><br/>
 +
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br/>
 +
 
 +
<math>\begin{align}
 +
Y_3[z]&= \frac{X[z].z+ X[z] + X[z].z^{-1}}{3} \\
 +
\frac{Y_3[z]}{X[z]}&= \frac{z(1+z^{-1} + z^{-2})}{3} \\
 +
H_3[z] &= \frac{1+z^{-1} + z^{-2}}{3z^{-1}} \\
 +
\end{align}</math>
 +
 
 +
Frequency Response H_3(<span class="texhtml">ω</span>),<br> <math>\begin{align}
 +
H_3[e^{j\omega }] &= \frac{1+e^{-j\omega }+e^{-j2\omega }}{3e^{-j\omega }} \\
 +
&= \frac{e^{-j\omega }+e^{-j\omega }(e^{j\omega } + e^{-j\omega })}{3e^{-j\omega }} \\
 +
&= \frac{e^{-j\omega }(1+2cos(\omega ))}{3e^{-j\omega }} \\
 +
&= \frac{1+2cos(\omega )}{3} \\
 +
\end{align}</math>
 +
 
 +
----
 +
 
 +
<math>y_4[n]= \frac{x[n+1]-2 x[n]+x[n-1]}{4}. </math><br/>
 +
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function<br/>
 +
 
 +
<math>\begin{align}
 +
Y_4[z]&= \frac{X[z].z- 2X[z] + X[z].z^{-1}}{4} \\
 +
\frac{Y_3[z]}{X[z]}&= \frac{z(1-2z^{-1} + z^{-2})}{4} \\
 +
H_3[z] &= \frac{1-2z^{-1} + z^{-2}}{4z^{-1}} \\
 +
\end{align}</math>
 +
 
 +
Frequency Response H_3(<span class="texhtml">ω</span>),<br> <math>\begin{align}
 +
H_4[e^{j\omega }] &= \frac{1-2e^{-j\omega }+e^{-j2\omega }}{4e^{-j\omega }} \\
 +
&= \frac{-2e^{-j\omega }+ 2 e^{-j\omega }\frac{(e^{j\omega } + e^{-j\omega })}{2}}{4e^{-j\omega }} \\
 +
&= \frac{2e^{-j\omega }(cos(\omega )-1)}{4e^{-j\omega }} \\
 +
&= \frac{cos(\omega )-1}{2} \\
 +
\end{align}</math>
 +
 
 +
----
 +
 
 +
Q3.
 +
 
 +
a. Substituting values directly would yield the following - <br>
 +
 
 +
<math>\begin{align}
 +
n &= ...\text{ -3, -2, -1, 0, 1, 2, 3, 4, 5} ...\\
 +
y\left[n\right] &= ...\text{  0,  -2,  -4, -1,  2, -1, -4, -2, 0} ...\\
 +
\end{align}</math>
 +
 
 +
b. h[n] =&nbsp;? <br> Substitute x[n] = <span class="texhtml">δ[''n'']</span> to obtain y[n] = h[n], <br> h[n] = <span class="texhtml">δ[''n'']</span> + 2<span class="texhtml">δ[''n'' − 1]</span> + <span class="texhtml">δ[''n'' − 2]</span> <br>
 +
 
 +
Now x[n] = -2<span class="texhtml">δ[''n'' + 2]</span> + <span class="texhtml">δ[''n'']</span> - 2<span class="texhtml">δ[''n'' − 2]</span> <br>
 +
 
 +
<math>\begin{align}
 +
y[n] &= x[n] * h[n] \\
 +
&= (-2\delta[n+2] + \delta[n] - 2\delta[n-2]) * (\delta[n] + 2\delta[n-1] + \delta[n-2]) \\
 +
&= -2\delta[n+2] - 4\delta[n+1] -2\delta[n] + \delta[n] + 2\delta[n-1] + \delta[n-2] - 2\delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\
 +
&= -2\delta[n+2] - 4\delta[n+1] - \delta[n] + 2\delta[n-1] - \delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\
 +
\end{align}</math>
 +
 
 +
c. x[n] = <span class="texhtml">''e''<sup>''j''ω''n''</sup></span> <br> (i) <br> <math>\begin{align}
 +
y[n] &=  e^{j\omega n} + 2 e^{j\omega (n-1)} + e^{j\omega (n-2)} \\
 +
&= e^{j\omega n}(1 + 2 e^{-j\omega } + e^{-2j\omega }) \\
 +
H(e^{j\omega}) &= 1 + 2 e^{-j\omega } + e^{-2j\omega } \\
 +
\end{align}</math>
 +
 
 +
(ii) <br> h[n] = <span class="texhtml">δ[''n'']</span> + 2<span class="texhtml">δ[''n'' − 1]</span> + <span class="texhtml">δ[''n'' − 2]</span> <br> H(<span class="texhtml">''e''<sup>''j''ω</sup></span>) = 1 + 2 <span class="texhtml">''e''<sup> − ''j''ω</sup></span> + <span class="texhtml">''e''<sup> − 2''j''ω</sup></span> <br>
 +
 
 +
(i) and (ii) are the same.<br>
 +
 
 +
d. x[n] = -2<span class="texhtml">δ[''n'' + 2]</span> + <span class="texhtml">δ[''n'']</span> - 2<span class="texhtml">δ[''n'' − 2]</span> <br> X(<span class="texhtml">''e''<sup>''j''ω</sup></span>) = -2 <span class="texhtml">''e''<sup>2''j''ω</sup></span> + 1 - 2<span class="texhtml">''e''<sup> − 2''j''ω</sup></span> <br>
 +
 
 +
<math>\begin{align}
 +
Y(e^{j\omega}) &= X(e^{j\omega})H(e^{j\omega}) \\
 +
&= (-2e^{2j\omega } + 1 - 2e^{-2j\omega } ).(1 + 2e^{-j\omega } + e^{-2j\omega }) \\
 +
&= -2e^{2j\omega } - 4e^{j\omega } - 2 + 1 + 2e^{-j\omega } + 2e^{-2j\omega } - 2e^{-2j\omega } - 4e^{-3j\omega } - 2e^{-4j\omega } \\
 +
&= -2e^{2j\omega } - 4e^{j\omega } - 1 - 2e^{-j\omega } - e^{-2j\omega } - 4e^{-3j\omega } - 2e^{-4j\omega } \\
 +
\\
 +
\text{Using Inverse DTFT,} \\
 +
y[n] &= -2\delta[n+2] - 4\delta[n+1] - \delta[n] + 2\delta[n-1] - \delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\
 +
\end{align}</math>
 +
 
 +
All 3 approaches lead to the same y[n].
 +
 
 +
----
 +
 
 +
Q4. <math>H(z)= \frac{1-\frac{1}{2}z^{-2}}
 +
{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}}</math>
 +
 
 +
:a. Sketch the locations of the poles and zeros.
 +
 
 +
<math>\begin{align}
 +
H(z) &= \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} \\
 +
H(z) &= \frac{(z+\frac{1}{\sqrt{2}})(z-\frac{1}{\sqrt{2}})}
 +
{  (z-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(z-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \\
 +
\end{align}</math>
 +
 
 +
Zeros: <br> <math>z_1 = \frac{1}{\sqrt{2}}, z_2 = -\frac{1}{\sqrt{2}}</math><br> Poles: <br> <math>p_1 = \frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}, p_2 = \frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}}</math>
 +
 
 +
[[Image:Zp1.jpg]]
 +
 
 +
:b. Determine the magnitude and phase of the frequency response <span class="texhtml">''H''(ω)</span>, for
 +
 
 +
<math>\omega = 0</math> <br/>
 +
[[Image:Zp2.jpg]]
 +
<math>
 +
\left| H(e^{j\omega}) \right| = \left| H(e^{j0}) \right| = \left| H(z=1) \right|</math><br> <math> = \left| \frac{(1+\frac{1}{\sqrt{2}})(1-\frac{1}{\sqrt{2}})} {  (1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.921</math><br> <math>\angle H(e^{j0}) = \angle c + \angle d - \angle a - \angle b = 0</math>
 +
 
 +
<br> <math>\omega =\frac{\pi}{4}</math><br>
 +
[[Image:Zp3.JPG]]
 +
<math>
 +
\left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{4}}) \right| = \left| H(z=\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right|</math><br>
 +
<math> = \left| \frac{(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} {  (\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 2
 
</math>
 
</math>
 +
<br>
 +
<math>\angle H(e^{j\frac{\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = \frac{\pi}{2} + arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} \right) - \frac{\pi}{4} - arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}}{1-\sqrt{2}-\frac{1}{2\sqrt{2}}} \right) = 0</math>
 +
 +
<math>\omega =\frac{\pi}{2}</math><br> [[Image:Zp4.jpg]] <math>\left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{2}}) \right| = \left| H(z=j) \right|</math><br>
 +
 +
<math> = \left| \frac{(j+\frac{1}{\sqrt{2}})(j-\frac{1}{\sqrt{2}})} {  (j-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(j-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 1.455</math><br>
 +
 +
<br>
 +
<math>\angle H(e^{j\frac{\pi}{2}}) = (\angle c + \angle d) - \angle a - \angle b = (\pi) - (arctan^{-1}\left( \frac{1-\frac{1}{2\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \right) + \pi) - (arctan^{-1}\left( \frac{1+\frac{1}{2\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} \right) + \pi) = -0.7563
 +
</math>
 +
 +
<math>\omega =\frac{3\pi}{4}</math><br/>
 +
[[Image:Zp5.JPG]]
 +
<math>\left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{3\pi}{4}}) \right| = \left| H(z=\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right|</math><br>
 +
 +
<math> = \left| \frac{(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} {  (\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = \frac{2}{3}
 +
</math>
 +
 +
<math>\angle H(e^{j\frac{3\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}}}{\frac{-2}{\sqrt{2}}} \right) + \pi) + \frac{\pi}{2} - (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}}{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}} \right) + \pi) + \frac{3\pi}{4} = -0.9273
 +
</math>
 +
 +
 +
<math>\omega =\pi</math><br/>
 +
[[Image:Zp6.JPG]]
 +
<math>
 +
\left| H(e^{j\omega}) \right| = \left| H(e^{j\pi}) \right| = \left| H(z=-1) \right|</math><br>
 +
<math> = \left| \frac{(-1+\frac{1}{\sqrt{2}})(-1-\frac{1}{\sqrt{2}})} {  (-1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(-1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.255
 +
</math><br>
 +
 +
<math>\angle H(e^{j\pi}) = (\angle c + \angle d) - \angle a - \angle b = 2\pi - 0 - 0 = 2\pi</math>
 +
 +
c. Is the system stable? Explain why or why not? <br/>
 +
The system is causal and the ROC extends outwards from the outermost pole since |<math>p_1</math>| = |<math>p_2</math>| < 1 and this ROC contains the unit circle. Therefore the system is stable. <br/>
 +
 +
d. Find the difference equation for y[n] in terms of x[n], corresponding to this transfer function H(z). <br/>
 +
 +
<math>H(z) = \frac{Y(z)}{X(z)} = \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}}</math><br/>
 +
<math>Y(z)(1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}) = X(z)(1-\frac{1}{2}z^{-2})</math><br/>
 +
 +
Taking inverse,<br/>
 +
<math>y[n]-\frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] = x[n] - \frac{1}{2}x[n-2]</math><br/>
 +
<math>y[n] = x[n] - \frac{1}{2}x[n-2] +\frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2]</math><br/>
 +
<br>
 
----
 
----
  
<math>x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ;</math>
+
Q5.<br/>
 +
<math>
 +
y[n]=\frac{1}{8} \left( x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]+x[n-6]+x[n-7]\right)
 +
</math>  
  
 +
a.<br/>
 +
<math>
 +
h[n]=\frac{1}{8} \left( \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]+\delta[n-6]+\delta[n-7] \right)
 +
</math> <br/>
 +
This is a finite duration response.<br/>
  
 +
b.
 +
<math>
 +
H[z]=\frac{1}{8} \left( 1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \right)
 +
</math> <br/>
 +
<math>
 +
H[z]=\frac{1}{8} \left( \frac{1-z^{-8}}{1-z^{-1}} \right)
 +
</math> <br/>
  
:<math>x_7[n]= \cos^2\left( \frac{2}{1000} \pi n\right) ;</math>.
+
c.  
:<math>x_8[n]= (-j)^n .</math>
+
  
 +
<math>
 +
H[z]=\frac{1}{8} \left( \frac{z^{8}-1}{z^{7}(z-1)} \right)
 +
</math> <br/>
 +
[[Image:Zp7.jpg]]
 +
<br/>
 +
Poles: <br/>
 +
<math>p_1 = 1</math><br/> 
 +
<math>p_2 = p_3 = ... = p_8 = 0</math><br/>
  
 +
Zeros: <br/>
 +
<math>z^{8} - 1 = 0 </math><br/>
 +
<math>z^{8} = e^{j2\pi } </math><br/>
 +
<math>z = e^{j2\pi /8 } </math><br/>
  
 +
Generalizing,<br/>
 +
<math>z_k = e^{j2\pi k/8 }</math> for k = 0,1,2,...,7<br/>
 
----
 
----
Back to [[Hw7ECE438F10|HW7]]
 
  
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]
+
Q6.<br/>
 +
a. <br/>
 +
<math>
 +
y[n]= \frac{1}{8} \left( x[n]-x[n-8] \right) +y[n-1]
 +
</math>
 +
 
 +
Using z-transform,<br/>
 +
<math>
 +
Y(z) = \frac{1}{8} \left( X(z)-X(z)z^{-8} \right) + Y(z)z^{-1} 
 +
</math><br/>
 +
<math>
 +
Y(z) (1 - z^{-1}) = X(z) \frac{1}{8}(1 - z^{-8})
 +
</math><br/>
 +
<math>
 +
H(z) = \frac{Y(z)}{X(z)}  =  \frac{1}{8} \left( \frac{ 1 - z^{-8} } {1 - z^{-1}} \right)
 +
</math><br/>
 +
b. Same as Q5, part c. <br/>
 +
c.
 +
H(z) can be re-written as <br/>
 +
<math>
 +
H[z]=\frac{1}{8} \left( 1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \right)
 +
</math> <br/>
 +
Taking inverse Z-transform of H(z) - <br/>
 +
<math>
 +
h[n]=\frac{1}{8} \left( \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]+\delta[n-6]+\delta[n-7] \right)
 +
</math> <br/>
 +
 
 +
This is a finite duration response.<br/>
 +
 
 +
----
 +
 
 +
Back to [[Hw7ECE438F10|HW7]]
 +
 
 +
Back to [[2010 Fall ECE 438 Boutin|ECE 438 Fall 2010]]
 +
 
 +
[[Category:2010_Fall_ECE_438_Boutin]]

Latest revision as of 11:23, 30 October 2011



Solution to HW7


Q1.

Recall, the Discrete Fourier Transform is defined as follows -

Definition: let x[n] be a DT signal with Period N. Then,

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j2\pi kn/N} $

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{j2\pi kn/N} $


What is the relation between the DFT and the Fourier series coefficients of continuous periodic function x[n]?
The DFT of a sampled signal x[n] of length N is directly proportional to the Fourier series coefficients of the continuous periodic version of x[n].
The DFT of the N samples comprising one period of x[n] equals N times the Fourier series coefficients.

Alternatively -
The fourier series coefficients of a periodic, bandlimited signal x are given by the DFT of one period of the samples of x, divided by N, where N is the DFT length and N is also the number of samples in each period of x.

Credit: Julius Smith III, stanford.edu


$ x_1[n]= e^{j \frac{2}{3} \pi n}; $

Function's period N = 3,
Using IDFT,
$ \begin{align} x_1[n] &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\ e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\ &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi n(2/3)} \right] \\ &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi n/3} \right] \end{align} $

For the two sides to be equal,
X[0] = 0
X[1] = 3
X[2] = 0

Plugging in we can verify,
$ \begin{align} e^{j \frac{2}{3} \pi n} &= \frac{1}{3} \left[ 0 + 3.e^{j2\pi n/3} + 0 \right]\\ e^{j \frac{2}{3} \pi n} &= \frac{1}{3} 3.e^{j2\pi n/3} \\ e^{j \frac{2}{3} \pi n} &= e^{j \frac{2}{3} \pi n} \end{align} $

So our three selected values for X[k] are correct. Thus
$ X[k] = \begin{cases} 3, & k = 1 \\ 0, & \mbox{else} \end{cases} $


$ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n}; $

Function x2[n] is aperiodic. Let's see why -
Assume x2[n] is periodic, then
$ e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi (n + N)} $ for function to be periodic, where N is an integer
$ e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}e^{j \frac{2}{\sqrt{3}} \pi N} $
$ e^{j \frac{2}{\sqrt{3}} \pi n} = e^{j \frac{2}{\sqrt{3}} \pi n}.(1) $
$ e^{j \frac{2}{\sqrt{3}} \pi N} = 1 $
For this to be true -
$ j \frac{2}{\sqrt{3}} \pi N = j 2\pi n, $ where n is an integer
$ N = n\sqrt{3} $
N is not an integer and this contradicts our assumption, proving that it cannot be true.
Thus, x_2[n] is aperiodic and we cannot apply the DFT.


$ x_3[n]= e^{j \frac{4}{3} \pi n}; $

Function's period N = 3,
Using IDFT,
$ \begin{align} x_3[n] &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\ e^{j \frac{4}{3} \pi n} &= \frac{1}{3} \sum_{k=0}^{2} X[k].e^{j2\pi kn/3} \\ &= \frac{1}{3} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/3} + X[2].e^{j2\pi n(2/3)} \right] \\ &= \frac{1}{3} \left[ X[0] + X[1].e^{j2\pi n/3} + X[2].e^{j4\pi n/3} \right] \end{align} $

For the two sides to be equal,
X[0] = 0
X[1] = 0
X[2] = 3

$ X[k] = \begin{cases} 3, & k = 2 \\ 0, & \mbox{else} \end{cases} $


$ x_4[n]= e^{j \frac{2}{1000} \pi n}; $ Function's period N = 1000,
Using IDFT,
$ \begin{align} x_4[n] &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\ e^{j \frac{2}{1000} \pi n} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\ &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)} + ... \right] \\ &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j4\pi n/1000} + ... \right] \end{align} $

For the two sides to be equal,
X[0] = 0
X[1] = 1000
X[2] = 0

$ X[k] = \begin{cases} 1000, & k = 1 \\ 0, & \mbox{else} \end{cases} $


$ x_5[n]= e^{-j \frac{2}{1000} \pi n}; $ Function's period N = 1000,
$ \begin{align} x_5[n]&= e^{-j \frac{2}{1000} \pi n}.1 \\ &= e^{-j \frac{2}{1000} \pi n}.e^{-j 2\pi n} \\ &= e^{j 2\pi n(1 - (1/1000))} \\ &= e^{j 2\pi n\frac{999}{1000} } \\ \end{align} $

Using IDFT,
$ \begin{align} x_5[n] &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\ e^{j 2\pi n\frac{999}{1000}} &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\ &= \frac{1}{1000} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)}+ ... + X[999].e^{j2\pi n(999/1000)} \right] \\ &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n (2/1000)} + ... + X[999].e^{j2\pi n(999/1000)} \right] \\ \end{align} $

For the two sides to be equal,
X[0] = 0
X[1] = 0
X[2] = 0
X[999] = 1000

$ X[k] = \begin{cases} 1000, & k = 999 \\ 0, & \mbox{else} \end{cases} $


$ \begin{align} x_6[n] &= \cos\left( \frac{2}{1000} \pi n\right) \\ &= \frac{1}{2}\left( e^{j\frac{2\pi n}{1000}} + e^{-j\frac{2\pi n}{1000}} \right) \\ &= \frac{1}{2} (x_4[n] + x_5[n]) \\ \end{align} $

We have an additional (1/2) to factor into the final coefficients, giving us -
$ X[k] = \begin{cases} 500, & k = 1 \\ 500, & k = 999 \\ 0, & \mbox{else} \end{cases} $


$ \begin{align} x_7[n] &= \cos^2\left( \frac{2}{1000} \pi n\right) \\ &= \left[ \frac{1}{2}\left( e^{j\frac{2\pi n}{1000}} + e^{-j\frac{2\pi n}{1000}} \right)\right]^2 \\ &= \frac{1}{4}\left( e^{j\frac{4\pi n}{1000}} + 2 + e^{-j\frac{4\pi n}{1000}} \right) \\ &= \frac{1}{4}\left( 2 + e^{j2\pi n\frac{2}{1000}} + e^{-j2\pi n\frac{2}{1000}}e^{-j2\pi n} \right) \\ &= \frac{1}{4}\left( 2 + e^{j2\pi n\frac{2}{1000}} + e^{j2\pi n\frac{998}{1000}} \right) \\ \end{align} $

Function's period N = 1000,
Using IDFT,
$ \begin{align} x_7[n] &= \frac{1}{1000} \sum_{k=0}^{999} X[k].e^{j2\pi kn/1000} \\ &= \frac{1}{1000} \left[ X[0] + X[1].e^{j2\pi n/1000} + X[2].e^{j2\pi n(2/1000)} + ... X[998].e^{j2\pi n(998/1000)} + X[999].e^{j2\pi n(999/1000)} \right] \\ \end{align} $

Comparing LHS and RHS,
X[0] = 500
X[1] = 0
X[2] = 250
...
X[998] = 250
X[999] = 0

$ X[k] = \begin{cases} 500, & k = 0 \\ 250, & k = 2 \\ 250, & k = 998 \\ 0, & \mbox{else} \end{cases} $


$ \begin{align} x_8[n]= (-j)^n \\ &= (e^{-j \pi /2})^n \\ &= e^{-j \pi n/2} \\ &= e^{-j \pi n/2}e^{j 2\pi} \\ &= e^{j 2\pi (3n/4)} \\ \end{align} $

Function's period N = 4,
Using IDFT,
$ \begin{align} x_8[n] &= \frac{1}{4} \sum_{k=0}^{3} X[k].e^{j2\pi kn/4} \\ e^{j 2\pi (3n/4)} &= \frac{1}{4} \sum_{k=0}^{3} X[k].e^{j2\pi kn/4} \\ &= \frac{1}{4} \left[ X[0].e^{j0} + X[1].e^{j2\pi n/4} + X[2].e^{j2\pi n(2/4)} + X[3].e^{j2\pi n(3/4)}\right] \\ &= \frac{1}{4} \left[ X[0] + X[1].e^{j\pi n/2} + X[2].e^{j\pi n} + X[3].e^{j\pi n(3/2)} \right] \end{align} $

For the two sides to be equal,
X[0] = 0
X[1] = 0
X[2] = 0
X[3] = 4

$ X[k] = \begin{cases} 4, & k = 3 \\ 0, & \mbox{else} \end{cases} $


Q2.

$ y_1[n]= \frac{x[n]+x[n-1]}{2} $

Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y_1[z]&= \frac{X[z]+X[z].z^{-1}}{2} \\ \frac{Y_1[z]}{X[z]}&= \frac{1+z^{-1}}{2} \\ H_1[z] &= \frac{1+z^{-1}}{2} \\ \end{align} $

Frequency Response H_1(ω),
$ \begin{align} H_1[e^{j\omega }] &= \frac{1+e^{-j\omega }}{2} \\ &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}+e^{-j\frac{\omega }{2}}}{2} \right) \\ &= e^{-j\frac{\omega }{2}} cos \left( \frac{\omega }{2} \right) \\ \end{align} $


$ y_2[n]= \frac{x[n]-x[n-1]}{2} $

Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y_2[z]&= \frac{X[z]-X[z].z^{-1}}{2} \\ \frac{Y_2[z]}{X[z]}&= \frac{1-z^{-1}}{2} \\ H_2[z] &= \frac{1-z^{-1}}{2} \\ \end{align} $

Frequency Response H_2(ω),
$ \begin{align} H_2[e^{j\omega }] &= \frac{1-e^{-j\omega }}{2} \\ &= e^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2} \right) \\ &= je^{-j\frac{\omega }{2}} \left( \frac{e^{j\frac{\omega }{2}}-e^{-j\frac{\omega }{2}}}{2j} \right) \\ &= je^{-j\frac{\omega }{2}} sin \left( \frac{\omega }{2} \right) \\ \end{align} $


$ y_3[n]= \frac{x[n+1]+x[n]+x[n-1]}{3} $
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y_3[z]&= \frac{X[z].z+ X[z] + X[z].z^{-1}}{3} \\ \frac{Y_3[z]}{X[z]}&= \frac{z(1+z^{-1} + z^{-2})}{3} \\ H_3[z] &= \frac{1+z^{-1} + z^{-2}}{3z^{-1}} \\ \end{align} $

Frequency Response H_3(ω),
$ \begin{align} H_3[e^{j\omega }] &= \frac{1+e^{-j\omega }+e^{-j2\omega }}{3e^{-j\omega }} \\ &= \frac{e^{-j\omega }+e^{-j\omega }(e^{j\omega } + e^{-j\omega })}{3e^{-j\omega }} \\ &= \frac{e^{-j\omega }(1+2cos(\omega ))}{3e^{-j\omega }} \\ &= \frac{1+2cos(\omega )}{3} \\ \end{align} $


$ y_4[n]= \frac{x[n+1]-2 x[n]+x[n-1]}{4}. $
Applying Z-transform on both sides and grouping terms, we can obtain the transfer function

$ \begin{align} Y_4[z]&= \frac{X[z].z- 2X[z] + X[z].z^{-1}}{4} \\ \frac{Y_3[z]}{X[z]}&= \frac{z(1-2z^{-1} + z^{-2})}{4} \\ H_3[z] &= \frac{1-2z^{-1} + z^{-2}}{4z^{-1}} \\ \end{align} $

Frequency Response H_3(ω),
$ \begin{align} H_4[e^{j\omega }] &= \frac{1-2e^{-j\omega }+e^{-j2\omega }}{4e^{-j\omega }} \\ &= \frac{-2e^{-j\omega }+ 2 e^{-j\omega }\frac{(e^{j\omega } + e^{-j\omega })}{2}}{4e^{-j\omega }} \\ &= \frac{2e^{-j\omega }(cos(\omega )-1)}{4e^{-j\omega }} \\ &= \frac{cos(\omega )-1}{2} \\ \end{align} $


Q3.

a. Substituting values directly would yield the following -

$ \begin{align} n &= ...\text{ -3, -2, -1, 0, 1, 2, 3, 4, 5} ...\\ y\left[n\right] &= ...\text{ 0, -2, -4, -1, 2, -1, -4, -2, 0} ...\\ \end{align} $

b. h[n] = ?
Substitute x[n] = δ[n] to obtain y[n] = h[n],
h[n] = δ[n] + 2δ[n − 1] + δ[n − 2]

Now x[n] = -2δ[n + 2] + δ[n] - 2δ[n − 2]

$ \begin{align} y[n] &= x[n] * h[n] \\ &= (-2\delta[n+2] + \delta[n] - 2\delta[n-2]) * (\delta[n] + 2\delta[n-1] + \delta[n-2]) \\ &= -2\delta[n+2] - 4\delta[n+1] -2\delta[n] + \delta[n] + 2\delta[n-1] + \delta[n-2] - 2\delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\ &= -2\delta[n+2] - 4\delta[n+1] - \delta[n] + 2\delta[n-1] - \delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\ \end{align} $

c. x[n] = ejωn
(i)
$ \begin{align} y[n] &= e^{j\omega n} + 2 e^{j\omega (n-1)} + e^{j\omega (n-2)} \\ &= e^{j\omega n}(1 + 2 e^{-j\omega } + e^{-2j\omega }) \\ H(e^{j\omega}) &= 1 + 2 e^{-j\omega } + e^{-2j\omega } \\ \end{align} $

(ii)
h[n] = δ[n] + 2δ[n − 1] + δ[n − 2]
H(ejω) = 1 + 2 ejω + e − 2jω

(i) and (ii) are the same.

d. x[n] = -2δ[n + 2] + δ[n] - 2δ[n − 2]
X(ejω) = -2 e2jω + 1 - 2e − 2jω

$ \begin{align} Y(e^{j\omega}) &= X(e^{j\omega})H(e^{j\omega}) \\ &= (-2e^{2j\omega } + 1 - 2e^{-2j\omega } ).(1 + 2e^{-j\omega } + e^{-2j\omega }) \\ &= -2e^{2j\omega } - 4e^{j\omega } - 2 + 1 + 2e^{-j\omega } + 2e^{-2j\omega } - 2e^{-2j\omega } - 4e^{-3j\omega } - 2e^{-4j\omega } \\ &= -2e^{2j\omega } - 4e^{j\omega } - 1 - 2e^{-j\omega } - e^{-2j\omega } - 4e^{-3j\omega } - 2e^{-4j\omega } \\ \\ \text{Using Inverse DTFT,} \\ y[n] &= -2\delta[n+2] - 4\delta[n+1] - \delta[n] + 2\delta[n-1] - \delta[n-2] - 4\delta[n-3] - 2\delta[n-4] \\ \end{align} $

All 3 approaches lead to the same y[n].


Q4. $ H(z)= \frac{1-\frac{1}{2}z^{-2}} {1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} $

a. Sketch the locations of the poles and zeros.

$ \begin{align} H(z) &= \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} \\ H(z) &= \frac{(z+\frac{1}{\sqrt{2}})(z-\frac{1}{\sqrt{2}})} { (z-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(z-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \\ \end{align} $

Zeros:
$ z_1 = \frac{1}{\sqrt{2}}, z_2 = -\frac{1}{\sqrt{2}} $
Poles:
$ p_1 = \frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}, p_2 = \frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}} $

Zp1.jpg

b. Determine the magnitude and phase of the frequency response H(ω), for

$ \omega = 0 $
Zp2.jpg $ \left| H(e^{j\omega}) \right| = \left| H(e^{j0}) \right| = \left| H(z=1) \right| $
$ = \left| \frac{(1+\frac{1}{\sqrt{2}})(1-\frac{1}{\sqrt{2}})} { (1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.921 $
$ \angle H(e^{j0}) = \angle c + \angle d - \angle a - \angle b = 0 $


$ \omega =\frac{\pi}{4} $
Zp3.JPG $ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{4}}) \right| = \left| H(z=\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right| $
$ = \left| \frac{(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} { (\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 2 $
$ \angle H(e^{j\frac{\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = \frac{\pi}{2} + arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} \right) - \frac{\pi}{4} - arctan^{-1} \left( \frac{\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}}{1-\sqrt{2}-\frac{1}{2\sqrt{2}}} \right) = 0 $

$ \omega =\frac{\pi}{2} $
Zp4.jpg $ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{\pi}{2}}) \right| = \left| H(z=j) \right| $

$ = \left| \frac{(j+\frac{1}{\sqrt{2}})(j-\frac{1}{\sqrt{2}})} { (j-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(j-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 1.455 $


$ \angle H(e^{j\frac{\pi}{2}}) = (\angle c + \angle d) - \angle a - \angle b = (\pi) - (arctan^{-1}\left( \frac{1-\frac{1}{2\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \right) + \pi) - (arctan^{-1}\left( \frac{1+\frac{1}{2\sqrt{2}}}{1-\frac{1}{\sqrt{2}}} \right) + \pi) = -0.7563 $

$ \omega =\frac{3\pi}{4} $
Zp5.JPG $ \left| H(e^{j\omega}) \right| = \left| H(e^{j\frac{3\pi}{4}}) \right| = \left| H(z=\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}) \right| $

$ = \left| \frac{(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}})} { (\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(\frac{-1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = \frac{2}{3} $

$ \angle H(e^{j\frac{3\pi}{4}}) = \angle c + \angle d - \angle a - \angle b = (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}}}{\frac{-2}{\sqrt{2}}} \right) + \pi) + \frac{\pi}{2} - (arctan^{-1}\left( \frac{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}}{\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}} \right) + \pi) + \frac{3\pi}{4} = -0.9273 $


$ \omega =\pi $
Zp6.JPG $ \left| H(e^{j\omega}) \right| = \left| H(e^{j\pi}) \right| = \left| H(z=-1) \right| $
$ = \left| \frac{(-1+\frac{1}{\sqrt{2}})(-1-\frac{1}{\sqrt{2}})} { (-1-(\frac{1}{2\sqrt{2}} + j\frac{1}{2\sqrt{2}}))(-1-(\frac{1}{2\sqrt{2}} - j\frac{1}{2\sqrt{2}})) } \right| = 0.255 $

$ \angle H(e^{j\pi}) = (\angle c + \angle d) - \angle a - \angle b = 2\pi - 0 - 0 = 2\pi $

c. Is the system stable? Explain why or why not?
The system is causal and the ROC extends outwards from the outermost pole since |$ p_1 $| = |$ p_2 $| < 1 and this ROC contains the unit circle. Therefore the system is stable.

d. Find the difference equation for y[n] in terms of x[n], corresponding to this transfer function H(z).

$ H(z) = \frac{Y(z)}{X(z)} = \frac{1-\frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}} $
$ Y(z)(1-\frac{1}{\sqrt{2}} z^{-1} +\frac{1}{4} z^{-2}) = X(z)(1-\frac{1}{2}z^{-2}) $

Taking inverse,
$ y[n]-\frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] = x[n] - \frac{1}{2}x[n-2] $
$ y[n] = x[n] - \frac{1}{2}x[n-2] +\frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2] $


Q5.
$ y[n]=\frac{1}{8} \left( x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]+x[n-6]+x[n-7]\right) $

a.
$ h[n]=\frac{1}{8} \left( \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]+\delta[n-6]+\delta[n-7] \right) $
This is a finite duration response.

b. $ H[z]=\frac{1}{8} \left( 1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \right) $
$ H[z]=\frac{1}{8} \left( \frac{1-z^{-8}}{1-z^{-1}} \right) $

c.

$ H[z]=\frac{1}{8} \left( \frac{z^{8}-1}{z^{7}(z-1)} \right) $
Zp7.jpg
Poles:
$ p_1 = 1 $
$ p_2 = p_3 = ... = p_8 = 0 $

Zeros:
$ z^{8} - 1 = 0 $
$ z^{8} = e^{j2\pi } $
$ z = e^{j2\pi /8 } $

Generalizing,
$ z_k = e^{j2\pi k/8 } $ for k = 0,1,2,...,7


Q6.
a.
$ y[n]= \frac{1}{8} \left( x[n]-x[n-8] \right) +y[n-1] $

Using z-transform,
$ Y(z) = \frac{1}{8} \left( X(z)-X(z)z^{-8} \right) + Y(z)z^{-1} $
$ Y(z) (1 - z^{-1}) = X(z) \frac{1}{8}(1 - z^{-8}) $
$ H(z) = \frac{Y(z)}{X(z)} = \frac{1}{8} \left( \frac{ 1 - z^{-8} } {1 - z^{-1}} \right) $
b. Same as Q5, part c.
c. H(z) can be re-written as
$ H[z]=\frac{1}{8} \left( 1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7} \right) $
Taking inverse Z-transform of H(z) -
$ h[n]=\frac{1}{8} \left( \delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]+\delta[n-4]+\delta[n-5]+\delta[n-6]+\delta[n-7] \right) $

This is a finite duration response.


Back to HW7

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett