Line 6: Line 6:
 
----
 
----
 
=<Solution>=
 
=<Solution>=
O: Original Signal from the counter(send out either 3V or 0V)
+
O: Original Signal from the counter(send out either 3V or 0V)<br>
N: Noise level
+
N: Noise level<br>
X: output from the counter
+
X: output from the counter<br>
Z: output after the filter
+
Z: output after the filter<br>
  
O  N  X  Z
+
O  N  X  Z<br>
----------
+
<br>
3 -2  1  3
+
3 -2  1  3<br>
3 -1  2  9
+
3 -1  2  9<br>
3  0  3 19
+
3  0  3 19<br>
3  1  4 33
+
3  1  4 33<br>
3  2  5 51
+
3  2  5 51<br>
0 -2 -2  9
+
0 -2 -2  9<br>
0 -1 -1  3
+
0 -1 -1  3<br>
0  0  0  1
+
0  0  0  1<br>
0  1  1  3
+
0  1  1  3<br>
0  2  2  9
+
0  2  2  9<br>
  
First We need to find the Probability for each cases of X
+
First We need to find the Probability for each cases of X<br>
  
P[X=-2]=P[N=-2]=1/10
+
P[X=-2]=P[N=-2]=1/10<br>
P[X=-1]=P[N=-1]=2/10
+
P[X=-1]=P[N=-1]=2/10<br>
P[X= 0]=P[N= 0]=4/10
+
P[X= 0]=P[N= 0]=4/10<br>
P[X= 1]=P[N=-2]+P[N= 1]=1/10+2/10=3/10
+
P[X= 1]=P[N=-2]+P[N= 1]=1/10+2/10=3/10<br>
P[X= 2]=P[N=-1]+P[N= 2]=2/10+1/10=3/10
+
P[X= 2]=P[N=-1]+P[N= 2]=2/10+1/10=3/10<br>
P[X= 3]=P[N= 0]=4/10
+
P[X= 3]=P[N= 0]=4/10<br>
P[X= 4]=P[N= 1]=2/10
+
P[X= 4]=P[N= 1]=2/10<br>
P[X= 5]=P[N= 2]=1/10
+
P[X= 5]=P[N= 2]=1/10<br>
  
To find the expected value of Z we need to find the expected value of X first.
+
To find the expected value of Z we need to find the expected value of X first.<br>
  
 
<math>E(X)= \sum_{k} g(x_k_)p_x_(x_k_)</math><br>
 
<math>E(X)= \sum_{k} g(x_k_)p_x_(x_k_)</math><br>
E[X]=(-2)*1/10 +(-1)*2/10 +(0)*4/10 +(1)*3/10 +(2)*3/10 +(3)*4/10 +(4)*2/10 +(5)*1/10=3
 
  
To find the expected values of X^2
+
E[X]=(-2)*1/10 +(-1)*2/10 +(0)*4/10 +(1)*3/10 +(2)*3/10 +(3)*4/10 +(4)*2/10 +(5)*1/10=3<br>
E[X^2]=4*1/10+1*2/10+0*4/10+1*3/10+4*3/10+9*4/10+16*2/10+25*1/10=11.4
+
  
E[Z]=E[2x^2+1]=2*E[X^2]+1=23.8
+
To find the expected values of X^2<br>
 +
E[X^2]=4*1/10+1*2/10+0*4/10+1*3/10+4*3/10+9*4/10+16*2/10+25*1/10=11.4<br>
  
To find the variance value of Z We have to find values of E[Z^2] and E[Z].
+
E[Z]=E[2x^2+1]=2*E[X^2]+1=23.8<br>
E[X^4]=16*1/10+1*2/10+0*4/10+1*3/10+16*3/10+81*4/10+256*2/10+625*1/10=153
+
  
E[Z^2]=E[(2*X^2+1)^2]=E[4X^4+4X^2+1]=4E[X^4]+4E[X^2]+1=4*153+4*11.4+1=658.6
+
To find the variance value of Z We have to find values of E[Z^2] and E[Z].<br>
 +
E[X^4]=16*1/10+1*2/10+0*4/10+1*3/10+16*3/10+81*4/10+256*2/10+625*1/10=153<br>
  
Var[Z]=E[Z^2]-E[Z]^2=658.6-23.8^2=92.16
+
E[Z^2]=E[(2*X^2+1)^2]=E[4X^4+4X^2+1]=4E[X^4]+4E[X^2]+1=4*153+4*11.4+1=658.6<br>
 +
 
 +
Var[Z]=E[Z^2]-E[Z]^2=658.6-23.8^2=92.16<br>
  
 
----
 
----

Revision as of 18:12, 27 February 2013

<Question>

From 555 Signal Counter 3V binary signal is being sent out. The counter has noise levels from -2 V to 2 V with 1V difference. After the counter has sent out a random signal, each noise level has probability of {1/10,2/10,4/10,2/10,1/10}. The signal goes through a filter, Z=2X^2+1. Find E[Z] and Var[Z].


<Solution>

O: Original Signal from the counter(send out either 3V or 0V)
N: Noise level
X: output from the counter
Z: output after the filter

O N X Z

3 -2 1 3
3 -1 2 9
3 0 3 19
3 1 4 33
3 2 5 51
0 -2 -2 9
0 -1 -1 3
0 0 0 1
0 1 1 3
0 2 2 9

First We need to find the Probability for each cases of X

P[X=-2]=P[N=-2]=1/10
P[X=-1]=P[N=-1]=2/10
P[X= 0]=P[N= 0]=4/10
P[X= 1]=P[N=-2]+P[N= 1]=1/10+2/10=3/10
P[X= 2]=P[N=-1]+P[N= 2]=2/10+1/10=3/10
P[X= 3]=P[N= 0]=4/10
P[X= 4]=P[N= 1]=2/10
P[X= 5]=P[N= 2]=1/10

To find the expected value of Z we need to find the expected value of X first.

$ E(X)= \sum_{k} g(x_k_)p_x_(x_k_) $

E[X]=(-2)*1/10 +(-1)*2/10 +(0)*4/10 +(1)*3/10 +(2)*3/10 +(3)*4/10 +(4)*2/10 +(5)*1/10=3

To find the expected values of X^2
E[X^2]=4*1/10+1*2/10+0*4/10+1*3/10+4*3/10+9*4/10+16*2/10+25*1/10=11.4

E[Z]=E[2x^2+1]=2*E[X^2]+1=23.8

To find the variance value of Z We have to find values of E[Z^2] and E[Z].
E[X^4]=16*1/10+1*2/10+0*4/10+1*3/10+16*3/10+81*4/10+256*2/10+625*1/10=153

E[Z^2]=E[(2*X^2+1)^2]=E[4X^4+4X^2+1]=4E[X^4]+4E[X^2]+1=4*153+4*11.4+1=658.6

Var[Z]=E[Z^2]-E[Z]^2=658.6-23.8^2=92.16


Questions

Back to third bonus point opportunity, ECE302 Spring 2013

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang