(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE301 S11 Exam 3 more practice]]
 
[[Category:ECE301 S11 Exam 3 more practice]]
 +
[[Category:ECE301Spring2011Boutin]]
 +
[[Category:Problem_solving]]
  
=ECE301S11_more_practice_CT_conv_1=
+
= Problem =
 +
Compute the convolution
  
 +
<math>z(t)=x(t)*y(t)  \ </math>
  
 +
between
  
Put your content here . . .
+
<math> x(t) = u(t) - u(t-1)  \ </math>
 +
 +
and
  
 +
<math>y(t) = u(t+2) - u(t-2)  \ </math>.
  
 +
= My Solution=
 +
<math>
 +
\begin{align}
 +
z(t) &= y(t) * x(t) \\
 +
&= \int_{-\infty}^{\infty}x(\tau) y(t-\tau)\mathrm{d}\tau \\
 +
&= \int_{-\infty}^{\infty}\left( u(\tau) - u(\tau-1) \right) \left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\
 +
&= \int_{0}^{1}\left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\
 +
&= \left[ (t-\tau+2)u(t-\tau+2)\right]\big|_0^1 - \left[ (t-\tau-2)u(t-\tau-2)\right]\big|_0^1 \\
 +
&= \left[ (t+1)u(t+1) - (t+2)u(t+2)\right] + \left[ -(t-3)u(t-3) + (t-2)u(t-2)\right]
 +
\end{align}
 +
</math>
  
  
 +
Proof of <math class="inline">\int_a^b u(\tau -5)\mathrm{d}\tau = [(\tau - 5)u(\tau - 5)] \Big|_a^b</math>
 +
 +
<math>
 +
\begin{align}
 +
\int_a^b u(\tau -5)\mathrm{d}\tau &= [(\tau - 5)u(\tau - 5)] \Big|_a^b\\
 +
\text{Let } \gamma &= \tau - 5 \\
 +
\mathrm{d}\gamma &= \mathrm{d}\tau \\
 +
\text{Since } \int u(\gamma)\mathrm{d}\gamma &= \gamma u(\gamma) \\
 +
\int_a^b u(\gamma)\mathrm{d}\gamma &= [\gamma u(\gamma)] \Big|_a^b\\
 +
\text{Replace } \tau -5 &= \gamma \\
 +
\int_a^b u(\tau -5)\mathrm{d}\tau &= [(\tau - 5)u(\tau - 5)] \Big|_a^b\\
 +
 +
\end{align}
 +
</math>
 +
==Comments==
 +
Write them here.
 +
----
 
[[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]]
 
[[ ECE301 S11 Exam 3 more practice|Back to ECE301 S11 Exam 3 more practice]]

Latest revision as of 10:42, 30 April 2011


Problem

Compute the convolution

$ z(t)=x(t)*y(t) \ $

between

$ x(t) = u(t) - u(t-1) \ $

and

$ y(t) = u(t+2) - u(t-2) \ $.

My Solution

$ \begin{align} z(t) &= y(t) * x(t) \\ &= \int_{-\infty}^{\infty}x(\tau) y(t-\tau)\mathrm{d}\tau \\ &= \int_{-\infty}^{\infty}\left( u(\tau) - u(\tau-1) \right) \left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\ &= \int_{0}^{1}\left( u(t-\tau+2) - u(t-\tau-2) \right)\mathrm{d}\tau \\ &= \left[ (t-\tau+2)u(t-\tau+2)\right]\big|_0^1 - \left[ (t-\tau-2)u(t-\tau-2)\right]\big|_0^1 \\ &= \left[ (t+1)u(t+1) - (t+2)u(t+2)\right] + \left[ -(t-3)u(t-3) + (t-2)u(t-2)\right] \end{align} $


Proof of $ \int_a^b u(\tau -5)\mathrm{d}\tau = [(\tau - 5)u(\tau - 5)] \Big|_a^b $

$ \begin{align} \int_a^b u(\tau -5)\mathrm{d}\tau &= [(\tau - 5)u(\tau - 5)] \Big|_a^b\\ \text{Let } \gamma &= \tau - 5 \\ \mathrm{d}\gamma &= \mathrm{d}\tau \\ \text{Since } \int u(\gamma)\mathrm{d}\gamma &= \gamma u(\gamma) \\ \int_a^b u(\gamma)\mathrm{d}\gamma &= [\gamma u(\gamma)] \Big|_a^b\\ \text{Replace } \tau -5 &= \gamma \\ \int_a^b u(\tau -5)\mathrm{d}\tau &= [(\tau - 5)u(\tau - 5)] \Big|_a^b\\ \end{align} $

Comments

Write them here.


Back to ECE301 S11 Exam 3 more practice

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva