Line 42: Line 42:
 
</math>
 
</math>
  
 +
<math>{\color{green}
 +
\text{Recall:}}
 +
</math>
 +
 +
<math>{\color{green}
 +
\text{i) } \int_{-\infty}^{+\infty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt}
 +
}</math>
 +
 +
<math>{\color{green}
 +
\text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\alpha|}
 +
}</math>
  
 
<math>
 
<math>
= z \text{ when } \left\{\begin{matrix}
+
\text{ Define } u = r cos\theta - z sin\theta
r cos\theta - z sin\theta = 0
+
\\
+
r sin \theta + z cos \theta = 0
+
\end{matrix}\right.
+
 
</math>
 
</math>
  
 
<math>
 
<math>
= \frac{r cos\theta}{sin \theta}, \theta > 0
+
\Rightarrow dz = \frac{du}{|sin\theta|}
 
</math>
 
</math>
 +
 +
<math>
 +
\text{ Now }
 +
</math>
 +
 +
<math>
 +
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
 +
</math>
 +
 +
<math>
 +
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|}
 +
</math>
 +
 +
<math>
 +
= \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|}
 +
</math>
 +
 +
<math>
 +
= \frac{|sin\theta|}{|sin\theta|} \delta(r)
 +
</math>
 +
  
 
----
 
----

Revision as of 17:43, 2 August 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $

$ {\color{green} \text{Recall:}} $

$ {\color{green} \text{i) } \int_{-\infty}^{+\infty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt} } $

$ {\color{green} \text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\alpha|} } $

$ \text{ Define } u = r cos\theta - z sin\theta $

$ \Rightarrow dz = \frac{du}{|sin\theta|} $

$ \text{ Now } $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|} $

$ = \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|} $

$ = \frac{|sin\theta|}{|sin\theta|} \delta(r) $



$ \color{blue}\text{Solution 2:} $

.QE 11 CS5 2 a sol2.PNG

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $

$ = \delta(r) $


$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{Solution 1:} $

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz} $


$ = z \text{ when } \left\{\begin{matrix} r cos\theta - z sin\theta = 1 \\ r sin \theta + z cos \theta = 1 \end{matrix}\right. $

$ = \frac{r cos\theta - 1}{sin \theta}, \theta > 0 $



$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 b sol2.PNG

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $

$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $

$ = \delta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $



$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $


$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2, (r sin\theta + z cos \theta)^2)} dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $



$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 c sol2.PNG

$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{f(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} = \sqrt{1 - 4r^2}, \text{ if }|r| \leq \frac{1}{2} $

$ \text{ else } P_{\theta}(\rho) = 0 $


$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{Solution 1:} $


$ P_{\theta}(\rho) = \int_{-\infty}^{+\infty}{rect \left( \sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2} \right) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}^{\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}{1 dz} $

$ = \left\{\begin{matrix} &\sqrt{1 - 4(r - (cos\theta + sin\theta))^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ otherwise} \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $

$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $

$ \text{ where } P_\theta(r) = \left\{\begin{matrix} &\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ &0, &\text{ else} \end{matrix}\right. $


$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


$ \color{blue}\text{Solution 1:} $

$ 1. \text{ Compute } \rho_{\theta}(r) $


$ 2. \text{ Compute FT of step 1.} $

$ 3. \text{ Multiply step 2 by the filter } H(\rho) = |\rho| = f_c \left [ rect(\frac{f}{2f_c}) - \Lambda(\frac{f}{f_c}) \right ], \text{ for some cut-off, } f_c $

$ 4. \text{ Compute inverseFT of step 3.} $


$ \color{blue}\text{Solution 2:} $

$ 1. \text{ Measure the projections } \rho_{\theta}(r) \text{ at various angles} $

$ 2. \text{ Filter the projections } \rho_{\theta}(r) \text{ with } h(r) \text{, where } H(\rho) = |\rho| \text{ and get } g_{\theta}(r) $

$ 3. \text{ Back project } g_{\theta}(r) \text{ along } r = xcos\theta + ysin\theta \text{ and get } $

$ f(x,y) = \int_{0}^{\pi}{g_\theta(xcos\theta + ysin\theta)d\theta} $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang