(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 1, August 2011, Part 1 = :[[ECE...)
 
Line 6: Line 6:
  
 
----
 
----
 +
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection}
 +
</math></span></font>
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \}
 +
</math><br>  
  
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}  
 +
= \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}.
 +
</math>
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
<math>\color{blue}
 +
\text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by}
 +
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
 +
F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy}
 +
</math><br>
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
<math>\color{blue}
 +
\text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r)  \text{ given by}
 +
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
 +
P_{\theta}(\rho)  = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}.
 +
</math><br>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
 
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>
 
  
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
<math>\color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y).
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
</math><br>
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
 
</math>
+
===== <math>\color{blue}\text{Solution 1:}</math> =====
 +
 
  
<math>
 
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
 
</math>
 
  
 
----
 
----
Line 37: Line 47:
 
----
 
----
  
<math>\color{blue}\left( \text{b} \right) \text{Find}  
+
<math>\color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1).
f_{x}\left( x|y,z\right )
+
 
</math><br>  
 
</math><br>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>
 
  
'''<font face="serif"><math>
 
= \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z}
 
</math>&nbsp;&nbsp;</font>'''
 
  
 
----
 
----
Line 59: Line 61:
 
----
 
----
  
<math>\color{blue}\left( \text{c} \right) \text{Find}
 
f_{Z}\left( z\right )
 
</math><br>
 
  
<math>\color{blue}\text{Solution 1:}</math>  
+
<math>\color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right).
 +
</math><br>
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>
 
  
'''<font face="serif"><math>
+
<math>\color{blue}\text{Solution 1:}</math>  
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
+
 
</math>&nbsp;&nbsp;</font>'''
+
  
 
----
 
----
Line 81: Line 77:
 
----
 
----
  
<math>\color{blue}\left( \text{d} \right) \text{Find}
+
<math>\color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right).
f_{Y}\left(y|z \right )
+
 
</math><br>  
 
</math><br>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>  
+
  
'''<font face="serif"><math>
+
</math>
=e^{-zy}z\cdot1_{\left[0,\infty \right )}(y)
+
</math>&nbsp;&nbsp;</font>'''
+
  
 
----
 
----
Line 101: Line 92:
 
sol2 here
 
sol2 here
 
----
 
----
<math>\color{blue}\left( \text{e} \right) \text{Find}
+
<math>\color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y).
f_{XY}\left(x,y|z \right )
+
 
</math><br>  
 
</math><br>  
 +
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>  
+
  
'''<font face="serif"><math>
+
</math>  
=\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y)
+
</math>&nbsp;&nbsp;</font>'''
+
  
 
----
 
----
Line 127: Line 113:
 
Go to  
 
Go to  
  
*Part 1: [[ECE-QE_CS1-2011_solusion-1|solutions and discussions]]  
+
*Part 1: [[ECE-QE_CS5-2011_solusion-1|solutions and discussions]]  
*Part 2: [[ECE-QE CS1-2011 solusion-2|solutions and discussions]]  
+
*Part 2: [[ECE-QE CS5-2011 solusion-2|solutions and discussions]]  
  
 
----
 
----

Revision as of 12:01, 31 July 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{Solution 1:} $

$ \color{blue}\text{Solution 2:} $

here put sol.2


$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{Solution 1:} $



$ \color{blue}\text{Solution 2:} $

sol2 here



$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $


$ \color{blue}\text{Solution 1:} $



$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{Solution 1:} $



$ \color{blue}\text{Solution 2:} $

sol2 here


$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


$ \color{blue}\text{Solution 1:} $



$ \color{blue}\text{Solution 2:} $

sol2 here


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett