Revision as of 12:57, 27 July 2012 by Sandy (Talk | contribs)


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 5, August 2011


Question

Part 1. 50 pts


 $ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $

$ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $

$ \color{blue} \text{For parts a) and b) let} $
$ \color{blue} h(m,n)=sinc(mT,nT), \text{where} T\leq1. $


$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue} \text{For parts c), d), and e) let} $
$ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $

$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $


Click here to view student answers and discussions

Part 2. 50 pts


 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

$ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

$ \color{blue}  = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}.  $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
$ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
$ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett