(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 5, August 2011, Part 1 = :[[ECE...)
 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:image processing]]
  
= [[ECE-QE_CS5-2011|Question 5, August 2011]], Part 1 =
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
:[[ECE-QE_CS5-2011_solusion-1|Part 1]],[[ECE-QE CS5-2011 solusion-2|2]]]
+
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
  
 +
Question 5: Image Processing
 +
</font size>
 +
 +
August 2011
 +
</center>
 +
----
 
----
 
----
 +
==Question==
 +
'''Part 1. ''' 50 pts
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>
 
  
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n).
 +
</math></span></font>  
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}.
 +
</math><br>
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
<math>\color{blue}
 +
\text{For parts a) and b) let}
 +
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
h(m,n)=sinc(mT,nT), \text{where} T\leq1.
 +
</math><br>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
 
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>
 
  
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
<math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>  
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
  
<math>
+
<math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2}  
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math>
+
 
+
here put sol.2
+
----
+
 
+
<math>\color{blue}\left( \text{b} \right) \text{Find}  
+
f_{x}\left( x|y,z\right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>
 
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{blue}
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
+
\text{For parts c), d), and e) let}
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</math><br>
</span></font>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right)
 +
</math><br>
 +
<math>\color{blue}
 +
\text{where } T\leq1.
 +
</math><br>
  
'''<font face="serif"><math>
 
= \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z}
 
</math>&nbsp;&nbsp;</font>'''
 
  
----
+
<math>\color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>
  
<math>\color{blue}\text{Solution 2:}</math><br>
+
<math>\color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2}  
 
+
sol2 here
+
----
+
 
+
<math>\color{blue}\left( \text{c} \right) \text{Find}  
+
f_{Z}\left( z\right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>
+
<math>\color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1.</math><br>
 
+
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>  
+
  
'''<font face="serif"><math>
 
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
 
</math>&nbsp;&nbsp;</font>'''
 
  
 +
:'''Click [[ECE-QE_CS5-2011_solusion-1|here]] to view student [[ECE-QE_CS5-2011_solusion-1|answers and discussions]]'''
 
----
 
----
 +
'''Part 2.''' 50 pts
  
<math>\color{blue}\text{Solution 2:}</math><br>
 
  
sol2 here
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection}
----
+
</math></span></font>
  
<math>\color{blue}\left( \text{d} \right) \text{Find}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
f_{Y}\left(y|z \right )
+
p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \}
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}  
 +
= \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}.
 +
</math>
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{blue}
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
\text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by}
</span></font>  
+
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
 +
F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy}
 +
</math><br>
  
'''<font face="serif"><math>
+
<math>\color{blue}
=e^{-zy}z\cdot1_{\left[0,\infty \right )}(y)
+
\text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by}
</math>&nbsp;&nbsp;</font>'''
+
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
 +
P_{\theta}(\rho)  = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}.
 +
</math><br>
  
----
 
  
<math>\color{blue}\text{Solution 2:}</math><br>
 
  
sol2 here
+
<math>\color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y).
----
+
<math>\color{blue}\left( \text{e} \right) \text{Find}  
+
f_{XY}\left(x,y|z \right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>  
+
<math>\color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1).
 +
</math><br>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right).
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
+
</math><br>  
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>  
+
  
'''<font face="serif"><math>
+
<math>\color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right).
=\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y)
+
</math><br>  
</math>&nbsp;&nbsp;</font>'''
+
  
----
+
<math>\color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y).
 +
</math><br>
  
<math>\color{blue}\text{Solution 2:}</math><br>
 
  
sol2 here
 
----
 
 
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
 
 
Go to
 
 
*Part 1: [[ECE-QE_CS5-2011_solusion-1|solutions and discussions]]
 
*Part 2: [[ECE-QE CS5-2011 solusion-2|solutions and discussions]]
 
  
 +
:'''Click [[ECE-QE_CS5-2011_solusion-2|here]] to view student [[ECE-QE_CS5-2011_solusion-2|answers and discussions]]'''
 
----
 
----
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Latest revision as of 10:25, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2011



Question

Part 1. 50 pts


 $ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $

                $ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $

$ \color{blue} \text{For parts a) and b) let} $
                $ \color{blue} h(m,n)=sinc(mT,nT), \text{where} T\leq1. $


$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $


$ \color{blue} \text{For parts c), d), and e) let} $
                $ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $


$ \color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $


Click here to view student answers and discussions

Part 2. 50 pts


 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $

$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett