Line 41: Line 41:
 
</math><br>
 
</math><br>
  
<math>\color{blue}\text{c) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2}
+
<math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>  
</math><br>  
+
  
<math>\color{blue}\left( \text{d} \right) \text{Find }  
+
<math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2}
f_{Y}\left(y|z \right ).
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\left( \text{e} \right) \text{Find }  
+
<math>\color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1.</math><br>
f_{XY}\left(x,y|z \right ).
+
</math><br>  
+
  
  
:'''Click [[ECE-QE_CS1-2011_solusion-1|here]] to view student [[ECE-QE_CS1-2011_solusion-1|answers and discussions]]'''
+
:'''Click [[ECE-QE_CS5-2011_solusion-1|here]] to view student [[ECE-QE_CS5-2011_solusion-1|answers and discussions]]'''
 
----
 
----
'''Part 2.''' 25 pts
+
'''Part 2.''' 50 pts
  
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.}
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection}
 
</math></span></font>  
 
</math></span></font>  
 +
 +
<math>\color{blue}
 +
p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \}
 +
</math><br>
 +
 +
<math>\color{blue}
 +
= \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}.
 +
</math>
 +
 +
<math>\color{blue}
 +
\text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by}
 +
</math><br>
 +
<math>\color{blue}
 +
F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy}
 +
</math><br>
 +
 +
<math>\color{blue}
 +
\text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r)  \text{ given by}
 +
</math><br>
 +
<math>\color{blue}
 +
P_{\theta}(\rho)  = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}.
 +
</math><br>
 +
  
  
:'''Click [[ECE-QE_CS1-2011_solusion-2|here]] to view student [[ECE-QE_CS1-2011_solusion-2|answers and discussions]]'''
+
:'''Click [[ECE-QE_CS5-2011_solusion-2|here]] to view student [[ECE-QE_CS5-2011_solusion-2|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 12:57, 27 July 2012


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 5, August 2011


Question

Part 1. 50 pts


 $ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $

$ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $

$ \color{blue} \text{For parts a) and b) let} $
$ \color{blue} h(m,n)=sinc(mT,nT), \text{where} T\leq1. $


$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue} \text{For parts c), d), and e) let} $
$ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $

$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $


Click here to view student answers and discussions

Part 2. 50 pts


 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

$ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

$ \color{blue}  = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}.  $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
$ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
$ \color{blue} P_{\theta}(\rho) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett