(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 5, August 2011, Part 1 = :[[ECE...)
 
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 
+
[[Category:QE]]
= [[ECE-QE_CS5-2011|Question 5, August 2011]], Part 1 =
+
[[Category:CNSIP]]
 
+
[[Category:problem solving]]
:[[ECE-QE_CS5-2011_solusion-1|Part 1]],[[ECE-QE CS5-2011 solusion-2|2]]]
+
[[Category:communication networks signal and image processing]]
  
 +
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] in Communication Networks Signal and Image processing (CS),  Question 5, August 2011=
 
----
 
----
 +
==Question==
 +
'''Part 1. ''' 50 pts
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>
 
  
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n).
 +
</math></span></font>  
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
<math>\color{blue}
 +
y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}.
 +
</math><br>
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
<math>\color{blue}
 +
\text{For parts a) and b) let}
 +
</math><br>
 +
<math>\color{blue}
 +
h(m,n)=sinc(mT,nT), \text{where} T\leq1.
 +
</math><br>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
 
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>  
+
<math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>  
  
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
<math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2}  
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
 
+
<math>
+
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math>
+
 
+
here put sol.2
+
----
+
 
+
<math>\color{blue}\left( \text{b} \right) \text{Find}
+
f_{x}\left( x|y,z\right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>  
+
<math>\color{blue}
 +
\text{For parts c), d), and e) let}
 +
</math><br>
 +
<math>\color{blue}
 +
h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right)
 +
</math><br>
 +
<math>\color{blue}
 +
\text{where } T\leq1.
 +
</math><br>
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{blue}\text{c) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2}  
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
= \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z}
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
 
+
<math>\color{blue}\left( \text{c} \right) \text{Find}  
+
f_{Z}\left( z\right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>
+
<math>\color{blue}\left( \text{d} \right) \text{Find }  
 
+
f_{Y}\left(y|z \right ).
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
+
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
 
+
<math>\color{blue}\left( \text{d} \right) \text{Find}  
+
f_{Y}\left(y|z \right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>
+
<math>\color{blue}\left( \text{e} \right) \text{Find }  
 
+
f_{XY}\left(x,y|z \right ).
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
</span></font>
+
 
+
'''<font face="serif"><math>
+
=e^{-zy}z\cdot1_{\left[0,\infty \right )}(y)
+
</math>&nbsp;&nbsp;</font>'''
+
 
+
----
+
 
+
<math>\color{blue}\text{Solution 2:}</math><br>
+
 
+
sol2 here
+
----
+
<math>\color{blue}\left( \text{e} \right) \text{Find}  
+
f_{XY}\left(x,y|z \right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>
 
 
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>
 
 
'''<font face="serif"><math>
 
=\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y)
 
</math>&nbsp;&nbsp;</font>'''
 
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-1|here]] to view student [[ECE-QE_CS1-2011_solusion-1|answers and discussions]]'''
 
----
 
----
 +
'''Part 2.''' 25 pts
  
<math>\color{blue}\text{Solution 2:}</math><br>
 
  
sol2 here
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}  \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.}
----
+
</math></span></font>
  
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
 
 
Go to
 
 
*Part 1: [[ECE-QE_CS5-2011_solusion-1|solutions and discussions]]
 
*Part 2: [[ECE-QE CS5-2011 solusion-2|solutions and discussions]]
 
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-2|here]] to view student [[ECE-QE_CS1-2011_solusion-2|answers and discussions]]'''
 
----
 
----
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Revision as of 12:20, 27 July 2012


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 5, August 2011


Question

Part 1. 50 pts


 $ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $

$ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $

$ \color{blue} \text{For parts a) and b) let} $
$ \color{blue} h(m,n)=sinc(mT,nT), \text{where} T\leq1. $


$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue} \text{For parts c), d), and e) let} $
$ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $

$ \color{blue}\text{c) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue}\left( \text{d} \right) \text{Find } f_{Y}\left(y|z \right ). $

$ \color{blue}\left( \text{e} \right) \text{Find } f_{XY}\left(x,y|z \right ). $


Click here to view student answers and discussions

Part 2. 25 pts


 $ \color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang