m
Line 17: Line 17:
 
</font size>
 
</font size>
  
August 2015
+
August 2016
 
</center>
 
</center>
 
----
 
----
Line 30: Line 30:
 
'''Part 2.'''
 
'''Part 2.'''
  
A point <math>\omega</math> is picked at random in the triangle shown below (all points are equally likely.) let the random variable <math>X(\omega)</math> be the perpendicular distance from <math>\omega</math> to be base as shown in the diagram.  
+
A point <math>\omega</math> is picked at random in the triangle shown [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2016/CS-1?dl=1 here] (all points are equally likely.) let the random variable <math>X(\omega)</math> be the perpendicular distance from <math>\omega</math> to be base as shown in the diagram.  
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.2|answers and discussions]]'''

Revision as of 22:25, 17 February 2019


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2016



Question

Part 1.

A friend tossed two fair coins, You asked "Did a coin land heads?" Your friends answers "yes." What is the probability that both coins landed heads? Justify your answer.

Click here to view student answers and discussions

Part 2.

A point $ \omega $ is picked at random in the triangle shown here (all points are equally likely.) let the random variable $ X(\omega) $ be the perpendicular distance from $ \omega $ to be base as shown in the diagram.

Click here to view student answers and discussions

Part 3.

Let $ X $ and $ Y $ be independent identically distributed exponential random variables with mean $ \mu $. Find the characteristic function of $ X+Y $.

Click here to view student answers and discussions

Part 4.

Consider a sequence of independent and identically distributed random variables $ X_1,X_2,... X_n $, where each $ X_i $ has mean $ \mu = 0 $ and variance $ \sigma^2 $. Show that for every $ i=1,...,n $ the random variables $ S_n $ and $ X_i-S_n $, where $ S_n=\sum_{j=1}^{n}X_j $ is the sample mean, are uncorrelated.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett